VLAEV et al.
10 V. N. Makatun, V. V. Pechkovskii, R. Ya. Melnikova and
means that, even at temperature of 473 K, not all H2O
molecules can be exchanged for D2O molecules. The
following two reasons were considered to explain the
observation. The first one lies in the insufficient size
of sample surface area leading to difficulties in the ex-
change for deuterium. The second one is the high acti-
vation energy of the exchange which implies strong
bonds in the water molecules in NiSeO3·2H2O. This
was confirmed by the fact that full dehydration of
NiSeO3·2H2O was achieved as high as 623 K, accord-
ing to the data from the thermal analysis. It may be
concluded, therefore, that both water molecules in the
crystallohydrate are structurally and energetically un-
equal. Thus, it is impossible to obtain lower crystallo-
hydrates (NiSeO3·H2O and NiSeO·1/3H2O) by step-
wise dehydration of NiSeO3·2H2O. They can be ob-
tained only under conditions of hydrothermal synthe-
sis within certain intervals of temperature and con-
centration of aqueous solutions of SeO2.
M. N. Ryer, Russ. J. Inorg. Chem., 19 (1974) 1851.
11 K. Kohn, K. Inone, O. Horie and S. Akimoto,
J. Solid State Chem., 18 (1976) 27.
12 M. Ebert, Z. Mi¹ka and I. Peková, Coll. Czech. Chem. Comm.,
47 (1982) 2069.
13 M. Wildner, Monatsh. Chem., 122 (1991) 585.
14 A. V. P. McManus, W. T. A. Harrison and A. K. Cheethan,
J. Solid State Chem., 92 (1991) 253.
15 K. Unterderweide, B. Engelen and K. Boldt,
J. Mol. Struct., 322 (1994) 233.
16 B. Engelen, K. Boldt, K. Unterderweide and U. Baumer,
Z. Anorg. Allg. Chem., 621 (1995) 331.
17 U. Baumer, K. Boldt, B. Engelen, H. Muller and
K. Unterderweide, Z. Anorg. Allg. Chem., 625 (1999) 395.
18 V. P. Verma, Thermochim. Acta, 327 (1999) 63.
19 J. A. Mandarino, Eur. J. Mineral., 6 (1994) 337.
20 L. T. Vlaev, S. D. Genieva and G. G. Gospodinov,
J. Therm. Anal. Cal., 81 (2005) 469.
21 A. Kotarski, Chemia Analityczna, 10 (1965) 161.
22 R. Pribil, Complexonometry (in Bulgarian), Izd. Thehnika,
Sofia 1980.
23 G. G. Gospodinov and M. G. Stancheva, J. Therm. Anal. Cal.,
78 (2004) 1057.
24 G. G. Gospodinov and M. G. Stancheva, J. Therm. Anal. Cal.,
81 (2005) 141.
Conclusions
It may be concluded, that the absorption bands observed
in the IR spectra of the different selenites studied, to-
gether with the results from the powder X-ray diffrac-
tion and chemical analyses irrefutably prove the exis-
tence of different crystalline forms of nickel(II) selenites
and provide enough data to determine the corresponding
crystallization fields of stability in the solubility diagram
of the system NiSeO3–SeO2–H2O.
25 G. F. Pinaev and V. P. Volkova, Zh. Neorg. Khim.,
21 (1976) 1341.
26 A. W. Coats and J. P. Redfern, Nature, 201 (1964) 68.
27 A. W. Coats and J. P. Redfern, J. Polym. Sci., Part B,
3 (1965) 917.
28 A. Simon and R. Paetzold, Z. Anorg. Allg. Chem.,
303 (1960) 39, 46.
29 A. Simon and R. Paetzold, Z. Anorg. Allg. Chem.,
303 (1960) 53.
30 C. A. Cody, R. C. Levitt, R. S. Viswanath and P. J. Miller,
J. Solid State Chem., 26 (1978) 281.
31 R. S. Viswanath, P. J. Miller and C. A. Cody,
J. Phys. Chem. Solids, 40 (1979) 223.
32 R. Ya. Melnikova, V. N. Makatun and V. V. Pechkovskii,
Zh. Neorg. Chim., 19 (1974) 1864.
References
1 V. G. Chukhlantcev and G. P. Tomashevskii, Zh. Anal. Khim.,
12 (1957) 296.
2 N. M. Selivanova, Z. L. Leshchinskaya, A. I. Maier,
I. S. Streltsov and E. Yu. Muzalev, Zh. Fiz. Khim.,
37 (1963) 1563.
3 Z. L. Leshchinskaya, N. M. Selivanova, A. I. Maier,
I. S. Srteltsov and E. Yu. Muzilev, Zh. Vses. Obsh. D.
Mendeleeva, 8 (1963) 577.
4 N. M. Selivanova and Z. L. Leshchinskaya, Zh. Neorg. Khim.,
9 (1964) 259.
5 O. J. Lieder and G. Gattow, Naturwissenschaften,
54 (1967) 318.
33 M. Ebert, Z. Mi¹ka and I. Pekova, Chemicke Zvesti,
36 (1982) 169.
34 G. G. Gospodinov, L. M. Sukova and K. I. Petrov,
Zh. Neorg. Khim., 33 (1988) 1970; 1975.
35 V. P. Verma and A. Khushu, J. Thermal Anal., 35 (1989) 1157.
36 V. V. Pechkovskii, V. N. Makatun and R. Ya. Melnikova,
Zh. Neorg. Khim., 18 (1973) 2023.
37 V. N. Makatun, R. Ya. Melnikova and T. I. Baranikova,
Koord. Khim., 1 (1975) 920.
38 P. A. Giguere and M. Falk, Spectrochim. Acta, 16 (1960) 1.
39 V. V. Pechkovskii and V. N. Makatun, Zh. Neorg. Khim.,
15 (1970) 2052.
6 O. J. Lieder and G. Gattow, Naturwissenschaften,
54 (1967) 443.
7 R. A. Muldagalieva, A. S. Pashinkin, E. A. Buketov and
S. S. Bakeeva, Trudy Khim. Metalurg. Inst. Acad. Nauk
Kazakh. SSR, 9 (1969) 11.
8 S. S. Bakeeva, E. A. Buketov and A. S. Pashinkin, Trudy
Khim. Metalurg. Inst. Acad. Nauk Kazakh. SSR, 9 (1969) 16.
9 V. N. Makatun, R. Ya. Melnikova, V. V. Pechkovskii and
L. M. Afanasev, Dokl. Akad. Nauk SSSR, Ser. Khim.,
213 (1973) 353.
Received: October 5, 2005
Accepted: December 19, 2005
OnlineFirst: May 23, 2006
DOI: 10.1007/s10973-005-7397-x
456
J. Therm. Anal. Cal., 86, 2006