C.-Y. Lo et al. / Tetrahedron Letters 44 (2003) 3143–3146
3145
3
. (a) Huisgen, R. Angew. Chem., Int. Ed. Engl. 1977, 16,
72; (b) Mukaiyama, T.; Kuwajima, J.; Ohno, K. Bull.
5
Chem. Soc. Jpn. 1965, 38, 54; (c) McDonald, H. H. J.;
Crawford, R. J. Can. J. Chem. 1972, 50, 428.
4. (a) Rau, H. Chem. Rev. 1983, 83, 535; (b) Inoue, Y.;
Yamasaki, N.; Shimoyama, H.; Tai, A. J. Org. Chem.
1993, 58, 1785; (c) Manring, L. E.; Peters, K. S. J. Am.
Chem. Soc. 1984, 106, 8077; (d) Griffin, G. W. Angew.
Chem., Int. Ed. Engl. 1971, 10, 537.
5. House, H. O.; Reif, D. J. J. Am. Chem. Soc. 1957, 79,
6491.
6
. The term ‘isomerization reaction’ is often misused in the
1,9a,b
literature.
Many so-called isomerization reactions are
actually rearrangement reactions. For instance, the base-
catalyzed isomerization of epoxide in Ref. 1a involves the
rearrangement of epoxide to allylic alcohol in the pres-
ence of a strong base.
Scheme 3.
transformation of trans-epoxide 17 into its cis-isomer
7
. For reviews on acid-mediated rearrangement of epoxides:
(
cis/trans=4.3) in 67% yield. Enyne metathesis of cis-
(
a) Rickborn, B. In Comprehensive Organic Synthesis,
19
isomer of 17 using Grubbs catalyst afforded function-
alized diene 18 in 62% yield.
CarbonꢀCarbon |-Bond Formation; Trost, B. M.; Flem-
ing, I., Ed.; Pergamon Press: Oxford, 1991; Vol. 3, Chap-
ter 3.3, pp. 733–775; (b) Parker, R. E.; Issacs, N. S.
Chem. Rev. 1959, 59, 737.
. For representative examples of acid-catalyzed rearrange-
ment of epoxides, see: (a) Kita, Y.; Furukawa, A.; Futa-
mura, J.; Ueda, K.; Sawama, Y.; Hamamoto, H.;
Fujioka, H. J. Org. Chem. 2001, 66, 8779 and references
cited therein; (b) Jung, M. E.; D’Amico, D. C. J. Am.
Chem. Soc. 1995, 117, 7379 and references cited therein;
In summary, we found that the isomerization of cis-
trans epoxides can be achieved efficiently with ruthe-
nium catalyst 1 (2–5 mol%) under mild conditions. The
method is applicable to diverse functionalized epoxides.
The mechanism of isomerization involves cleavage of
the CꢀO bond at the epoxide carbon of the activating
group. S 2 attack of the epoxide by ruthenium is
proposed as the key step. This isomerization enhances
the usefulness of epoxides in organic synthesis.
8
N
(
5
c) Hanson, R. M.; Sharpless, K. B. J. Org. Chem. 1986,
1, 1922.
9
. The mechanism appears to vary for low-valence metal
catalysts, see: (a) Milstein, D.; Buchman, O.; Blum, J. J.
Org. Chem. 1977, 42, 2299; (b) Kulawiec, R. J. J. Org.
Chem. 1994, 59, 7195; (c) Alper, H.; Des Roches, D.;
Durst, T.; Legault, R. J. Org. Chem. 1976, 41, 3611; (d)
Suzuki, M.; Dda, Y.; Noyori, R. J. Am. Chem. Soc. 1979,
Supplementary material
Experimental procedures for catalytic reactions and
spectral data of new compounds 1–18.
1
2
01, 1623; (e) Eisenmann, J. L. J. Org. Chem. 1962, 27,
706.
Acknowledgements
10. Groves, J. T.; Ahn, K.-H.; Quinn, R. J. Am. Chem. Soc.
1
988, 110, 4217.
The authors wish to thank National Science Council,
Taiwan for support of this work.
1
1. Gemel, C.; Trimmel, G.; Slugovc, C.; Kremel, S.; Mere-
iter, K.; Schmid, R.; Kirchner, K. Organometallics 1996,
15, 3998.
References
12. The trans/cis equilibrium ratio of stilbene oxide was
found to be 31 upon photolysis at 23°C in pentane. See
Ref. 4b.
1
. For review of oxirane chemistry, see: Erden, I. In Com-
prehensive Heterocyclic Chemistry, 2nd ed.; Katritzky, A.
R.; Rees, C. W., Eds.; Pergamon Press: Oxford, 1996;
Vol. 1A, pp. 97–1369; (b) Sainsbury, M. In Three-, Four-,
and Five-membered Monoheterocyclic Compounds. Rodds’
Chemistry of Carbon Compounds, 2nd ed.; Second Sup-
plement to Volume IV, Heterocyclic Compounds; Part A,
Elsevier: Amsterdam, 1997.
. For representative examples, see: (a) Lautens, M.; Fag-
nou, K. Org. Lett. 2000, 2, 2319; (b) Sodergren, M. J.;
Andersson, P. G. J. Am. Chem. Soc. 1998, 120, 10760; (c)
Caron, M.; Sharpless, K. B. J. Org. Chem. 1985, 50,
13. No catalytic activity was found for ruthenium catalysts
including TpRu(PPh ) Cl, C M Ru(PPh ) Cl, TpRu-
3
2
5
5
3 2
(COD)Cl, Cl Ru(PPh ) and C M Ru(COD)Cl.
2
3 3
5
5
14. The cis form of alkynylepoxide 10a has 0.89 kcal/mol less
in energy than its trans isomer based on MM2 program
(Pro 6.0 edition).
15. The trans-epoxide 12 given from isomerization of
(2S,3R)-cis-epoxide has [h] value −45.6 (83% ee, CHCl3,
c=0.50) consistent to that of authentic (2S,3S)-trans-
2
epoxide ([h]=−49.5, 89% ee, CHCl , c=0.50) reported in
3
16
literature. We also prepared authentic (2S,3S)-trans-
epoxides 13 and (2S,3R)-cis-epoxide 14, the [h] values of
which are used to identify absolute configurations of
products isomerized from (2S,3R)-trans-epoxides 13 and
(2S,3S)-cis-epoxide 14. For the details, see Supporting
information.
1
557; (d) Lin, K.-Q.; Li, Y.-M.; Chan, A. S. C. In
Principles and Applications of Asymmetric Synthesis;
Wiley: London, 2001; Chapter 4, pp. 159–220; (e) Pater-
son, I.; Berrisford, D. J. Angew. Chem., Int. Ed. Engl.
1
992, 31, 1179.