10.1002/anie.201809567
Angewandte Chemie International Edition
COMMUNICATION
Nishihara, Chem. Soc. Rev. 2015, 44, 7698; d) E. Katz, G. Scheller, T.
M. Putvinski, M. L. Schilling, W. L. Wilson, C. E. D. Chidsey, Science
1991, 254, 1485; e) H. Byrd, E. P. Suponeva, A. B. Bocarsly, M. E.
Thompson, Nature 1996, 380, 610.
excellent electrocatalytic performance with further optimizing
possibility by varying electrochemical conditions.
In conclusion, vertical step growth polymerization driven by
electrochemical stimuli with tunable interface function of
electrode was successfully developed via alternation of
reductive and oxidative reactions. Thanks to the controlled
electrochemical couplings and template effect of SAM, this
polymerization has not only fabricated vertical molecular wire on
electrode, also showed the sequence and topology controllable
possibility. The resulting surface confined molecular wire
presented fast electron transfer as well as SAM, and superior
electrocatalytic performance to general SAM and random
electropolymerized film widely used before. With rapid and
programmable electrochemical features, in principle for practical
applications, various types of metal complexes could be
introduced into molecular wire with sequence controllability in
one-pot or in alternative solutions. It is highly anticipated that this
simple polymerization can be generalized for practical molecular
interface relative applications with expectably superior
performances.
[9]
a) G. M. Credo, A. K. Boal, K. Das, T. H. Galow, V. M. Rotello, D. L.
Feldheim, C. B. Gorman, J. Am. Chem. Soc. 2002, 124, 9036; b) K.
Terada, H. Nakamura, K. Kanaizuka, M. Haga, Y. Asai, T. Ishida, ACS
Nano 2012, 6, 1988; c) G. Zeng, J. Gao, S. Chen, H. Chen, Z. Wang, X.
Zhang, Langmuir 2007, 23, 11631; d) M. D. Yilmaz, J. Huskens, Soft
Matter 2012, 8, 11768.
[10] a) A. B. Descalzo, R. Martínez-Máñez, F. Sancenón, K. Hoffmann, K.
Rurack, Angew. Chem. Int. Ed. 2006, 45, 5924; Angew. Chem. 2006,
118, 6068; b) F. Tancini, D. Genovese, M. Montalti, L. Cristofolini, L.
Nasi, L. Prodi, E. Dalcanale, J. Am. Chem. Soc. 2010, 132, 4781; c) T.
Ogoshi, S. Takashima, T. Yamagishi, J. Am. Chem. Soc. 2015, 137,
10962.
[11] a) C. Friebe, M. D. Hager, A. Winter, U. S. Schubert, Adv. Mater. 2012,
24, 332; b) B. J. Holliday, T. M. Swager, Chem. Commun. 2005, 23; c)
J. Heinze, B. A. Frontana-Uribe, S. Ludwigs, Chem. Rev. 2010, 110,
4724.
[12] P. M. Beaujuge, J. R. Reynolds, Chem. Rev. 2010, 110, 268.
[13] N. Haddour, J. Chauvin, C. Chantal Gondran, S. Cosnier, J. Am. Chem.
Soc. 2006, 128, 9693.
[14] a) D. L. Ashford, A. M. Lapides, A. K. Vannucci, K. Hanson, D. A.
Torelli, D. P. Harrison, J. L. Templeton, T. J. Meyer, J. Am. Chem. Soc.
2014, 136, 6578; b) F. Li, K. Fan, L. Wang, Q. Daniel, L. Duan, L. Sun,
ACS Catal. 2015, 5, 3786; c) L. Wang, K. Fan, Q. Daniel, L. Duan, F. Li,
B. Philippe, H. Rensmo, H. Chen, J. Sun, L. Sun, Chem. Commun.
2015, 51, 7883; d) D. L. Ashford, B. D. Sherman, R. A. Binstead, J. L.
Templeton, T. J. Meyer, Angew. Chem. Int. Ed. 2015, 54, 4778; Angew.
Chem. 2015, 127, 4860.
Acknowledgements
We are grateful to Prof. Zhaohui Su, Prof. Shengxiang Ji, and Dr.
Bo Liu in CIAC, and Prof. Katsuhiko Ariga, Dr. Jonathan P. Hill,
and Dr. Shinsuke Ishihara in NIMS, Japan for useful discussions.
This work was supported by the National Natural Science
Foundation of China (51573181, 21774121), the Hundred
Talents Program, CAS, China.
[15] a) L. Duan, L. Wang, F. Li, L. Sun, Acc. Chem. Res. 2015, 48, 2084; b)
V. Kunz, D. Schmidt, M. I. S. Röhr, R. Mitrić, F. Würthner, Adv. Energy
Mater. 2017, 7, 1602939; c) T. J. Meyer, M. V. Sheridan, B. D.
Sherman, Chem. Soc. Rev. 2017, 46, 6148; d) L. Duan, F. Bozoglian, S.
Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, Nat. Chem. 2012, 4,
418; e) D. Wang, S. L. Marquard, L. Troian-Gautier, M. V. Sheridan, B.
D. Sherman, Y. Wang, M. S. Eberhart, B. H. Farnum, C. J. Dares, T. J.
Meyer, J. Am. Chem. Soc. 2018, 140, 719.
Keywords: step polymerization • single molecular assembly •
self-assembled monolayer • C-C coupling • electrochemistry
[16] Z. Fang, S. Keinan, L. Alibabaei, H. Luo, A. Ito, T. J. Meyer, Angew.
Chem. Int. Ed. 2014, 53, 4872; Angew. Chem. 2014, 126, 4972.
[17] M. Li, S. Ishihara, M. Akada, M. Liao, L. Sang, J. P. Hill, V. Krishnan, Y.
Ma, K. Ariga, J. Am. Chem. Soc. 2011, 133, 7348.
[1]
a) Z. Liu, A. A. Yasseri, J. S. Lindsey, D. F. Bocian, Science 2003, 302,
1543; b) T. Gupta, M. E. van der Boom, Angew. Chem. Int. Ed. 2008,
47, 5322; Angew. Chem. 2008, 120, 5402; c) A. Vilan, D. Cahen, Chem.
Rev. 2017, 117, 4624; d) A. Vilan, D. Aswal, D. Cahen, Chem. Rev.
2017, 117, 4248.
[18] a) M. Li, S. Kang, J. Du, J. Zhang, J. Wang, K. Ariga, Angew. Chem. Int.
Ed. 2018, 57, 4936; Angew. Chem. 2018, 130, 5030; b) M. Li, Chem.
Eur. J. 10.1002/chem.201803246.
[2]
[3]
a) V. Singh, P. C. Mondal, A. K. Singh, M. Zharnikov, Coord. Chem.
Rev. 2017, 330, 144; b) E. R. Dionne, A. Badia, ACS Appl. Mater.
Interfaces 2017, 9, 5607.
[19] a) C. Xia, R. C. Advincula, Chem. Mater. 2001, 13, 1682; b) Y. Lv, L.
Yao, C. Gu, Y. Xu, D. Liu, D. Lu, Y. Ma, Adv. Funct. Mater. 2011, 21,
2896; c) M. Oçafrain, T. K. Tran, P. Blanchard, S. Lenfant, S. Godey, D.
Vuillaume, J. Roncali, Adv. Funct. Mater. 2008, 18, 2163.
a) M. K. Brennaman, R. J. Dillon, L. Alibabaei, M. K. Gish, C. J. Dares,
D. L. Ashford, R. L. House, G. J. Meyer, J. M. Papanikolas, T. J. Meyer,
J. Am. Chem. Soc. 2016, 138, 13085; b) J. C. Wang, S. P. Hill, T.
Dilbeck, O. O. Ogunsolu, T. Banerjee, K. Hanson, Chem. Soc. Rev.
2018, 47, 104.
[20] a) B. Zhang, F. Li, R. Zhang, C. Ma, L. Chen, L. Sun, Chem. Commun.
2016, 52, 8619; b) Y. Tsubonouchi, S. Lin, A. R. Parent, G. W. Brudvig,
K. Sakai, Chem. Commun. 2016, 52, 8018; c) M. Schulze, V. Kunz, P.
D. Frischmann, F. Würthner, Nat. Chem. 2016, 8, 577.
[4]
a) P. Pallavicini, G. Dacarroa, Y. A. Diaz-Fernandezb, A. Taglietti,
Coord. Chem. Rev. 2014, 275, 37; b) A. Prꢀvoteau, K. Rabaey, ACS
Sens. 2017, 2, 1072.
[21] a) C. C. L. McCrory, S. Jung, J. C. Peters, T. F. Jaramillo, J. Am. Chem.
Soc. 2013, 135, 16977; b) Y. Yoon, B. Yan, Y. Surendranath, J. Am.
Chem. Soc. 2018, 140, 2397.
[5]
[6]
J. E. Greene, Appl. Phys. Rev. 2015, 2, 011101.
a) J. F. Stoddart, Acc. Chem. Res. 2001, 34, 410; b) N. Pavliček, L.
Gross, Nat. Rev. Chem. 2017, doi:10.1038/s41570-016-0005; c) R.
Otero, J. M. Gallego, A. L. Vázquez de Parga, N. Martín, R. Miranda,
Adv. Mater. 2011, 23, 5148.
[22] a) D. Bu, Y. Xiong, Y. N. Tan, M. Meng, P. J. Low, D.-B. Kuang, C. Y.
Liu, Chem. Sci. 2018, 9, 3438; b) Y. Zheng, A. J. Giordano, R. C.
Shallcross, S. R. Fleming, S. Barlow, N. R. Armstrong, S. R. Marder, S.
S. Saavedra, J. Phys. Chem. C 2016, 120, 20040; c) R. Sakamoto, S.
Katagiri, H. Maeda, H. Nishihara, Coord. Chem. Rev. 2013, 257, 1493;
d) R. Sakamoto, S. Katagiri, H. Maeda, Y. Nishimori, S. Miyashita, H.
Nishihara, J. Am. Chem. Soc. 2015, 137, 734.
[7]
[8]
a) R. B. Merrifield, Science 1965, 150, 178. b) R. B. Merrifield, Angew.
Chem. Int. Ed. 1985, 24, 799; Angew. Chem. 1985, 97, 801.
a) G. de Ruiter, M. Lahav, M. E. van der Boom, Acc. Chem. Res. 2014,
47, 3407; b) P. C. Mondal, V. Singh, M. Zharnikov, Acc. Chem. Res.
2017, 50, 2128; c) R. Sakamoto, K.-H. Wu, R. Matsuoka, H. Maeda, H.
[23] a) D. Lebedev, Y. Pineda-Galvan, Y. Tokimaru, A. Fedorov, N. Kaeffer,
C. Copꢀret, Y. Pushkar, J. Am. Chem. Soc. 2018, 140, 451; b) D. W.
This article is protected by copyright. All rights reserved.