Organic Letters
Letter
ORCID
Scheme 4. Reaction Scheme for Imine-Directed C−H
Alkylation Reaction with Tetraethylammonium Bromide as an
Alkyl Source8
Notes
̈
The authors declare no competing financial interest.
REFERENCES
■
(1) For selected contributions, see: (a) Miyaura, N.; Suzuki, A. Chem.
Rev. 1995, 95, 2457−2483. (b) Heck, R. F.; Nolley, J. P. J. Org. Chem.
1972, 37, 2320−2322. (c) Negishi, E.-i. Angew. Chem., Int. Ed. 2011, 50,
6738−6764. (d) Zeng, H.; Qiu, Z.; Dominguez-Huerta, A.; Hearne, Z.;
Chen, Z.; Li, C.-J. ACS Catal. 2017, 7, 510−519. (e) Komiyama, T.;
Minami, Y.; Hiyama, T. ACS Catal. 2017, 7, 631−651. (f) Sun, H.-Y.;
Hall, D. G. Top. Organomet. Chem. 2015, 49, 221−242.
(2) For selected recent reviews on C−H activation, see: (a) Chen, Z.;
Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Org. Chem. Front. 2015, 2,
1107−1295. (b) Roudesly, F.; Oble, J.; Poli, G. J. Mol. Catal. A: Chem.
2017, 426, 275−296. (c) Moselage, M.; Li, J.; Ackermann, L. ACS Catal.
2016, 6, 498−525. (d) Shi, G.; Zhang, Y. Adv. Synth. Catal. 2014, 356,
1419−1442. (e) Gensch, T.; Hopkinson, M. N.; Glorius, F.; Wencel-
Delord, J. Chem. Soc. Rev. 2016, 45, 2900−2936. (f) Zatolochnaya, O. V.;
Gevorgyan, V. Nat. Chem. 2014, 6, 661−663. (g) Dastbaravardeh, N.;
Asasecondexample, imine20waschosenasasubstrateandthe
alkylation was carried out according to the reaction conditions
published by Jun,12 again substituting the olefin with tetraethyl-
ammonium bromide and KOH (Scheme 4).
The reactionworked according toprotocol, but alwaysstopped
at about 40% conversion to the product. Since product 21 was
unstable upon aqueous workup, we decided to hydrolyze the
reactionmixture before. This ledto39% of product 18 and61% of
acetophenone 17, which corresponds to unreacted starting
material 20 after hydrolysis. No bis-alkylated product was
detected in this case.
Obviously, this yield is not satisfying and more reaction
optimization is needed. However, since this was only an
experiment to demonstrate the applicability of this protocol and
to show that quaternary ammonium salts should be considered as
ethene (or generally olefin) alternatives when developing new
alkylation reactions, additional reaction optimization was not
carried out. Further investigations toward expansion of our
protocol to other systems are underway in our laboratory.
To summarize, benzylic amines were alkylated using
quaternary ammonium salts as an alkyl source. Hofmann
elimination was found to be the crucial step in order to obtain
effective conversion to the product. Optimization of the reaction
conditions led to a universal and practical protocol for alkylation
reactions via C−H activation where gaseous olefins can be
substituted for solid quaternary ammonium salts. It was shown
that different directing groups (pyridine, ketone, imine) can be
used, as well as different catalysts based on both rhodium and
ruthenium. Next, use of palladium will be tested, as well as, most
importantly, nonprecious metals for this type of alkylation
reactions.
Christakakou, M.; Haider, M.; Schnurch, M. Synthesis 2014, 46, 1421−
̈
1439. (h) Ackermann, L. Acc. Chem. Res. 2014, 47, 281−295.
(i) Ackermann, L. Chem. Rev. 2011, 111, 1315−1345. (j) Pototschnig,
G.; Maulide, N.; Schnurch, M. Chem. - Eur. J. 2017, 23, 9206−9232.
̈
(3) (a) Wencel-Delord, J.; Glorius, F. Nat. Chem. 2013, 5, 369−375.
(b) Schipper, D. J.; Fagnou, K. Chem. Mater. 2011, 23, 1594−1600.
(c) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K. Angew. Chem., Int. Ed.
2012, 51, 8960−9009.
(4) For selected examples, see: (a) Hofmann, N.; Ackermann, L. J. Am.
Chem. Soc.2013,135,5877−5884. (b)Zhao, Y.;Chen, G. Org. Lett. 2011,
13, 4850−4853. (c) Ackermann, L. Chem. Commun. 2010, 46, 4866−
4877. (d) Chen, Z.; Hu, L.; Zeng, F.; Zhu, R.; Zheng, S.; Yu, Q.; Huang, J.
Chem. Commun. 2017, 53, 4258−4261. (e) Mariampillai, B.; Alliot, J.; Li,
M.; Lautens, M. J. Am. Chem. Soc. 2007, 129, 15372−15379. (f) Patel, U.
N.; Pandey, D. K.; Gonnade, R. G.; Punji, B. Organometallics 2016, 35,
1785−1793. (g) Ruan, Z.; Lackner, S.; Ackermann, L. Angew. Chem., Int.
Ed. 2016, 55, 3153−3157.
(5) For recent reviews, see: (a) Dong, Z.; Ren, Z.; Thompson, S. J.; Xu,
Y.; Dong, G. Chem. Rev. 2017, 117, 9333−9403. (b) Ma, W.; Gandeepan,
P.; Li, J.; Ackermann, L. Org. Chem. Front. 2017, 4, 1435−1467.
(6) (a) von Hofmann, A. W. Ann. 1851, 78, 253−286. (b) Hofmann, A.
W. Ann. 1851, 79, 11−37. (c) Hofmann, A. W. Ber. Dtsch. Chem. Ges.
1881, 14, 659−669. (d) Hofmann, A. W. Ber. Dtsch. Chem. Ges. 1881, 14,
494−496. (e) Brewster, J. H.; Eliel, E. L. Org. React. 1953, 7, 99−197.
(7) (a) Pollice, R.; Dastbaravardeh, N.; Marquise, N.; Mihovilovic, M.
D.;Schnurch, M. ACSCatal. 2015, 5, 587−595.(b)Pollice, R.;Schnurch,
̈
̈
M. J. Org. Chem. 2015, 80, 8268−8274.
(8) For reviews, see: (a) Murakami, M. Chem. Rec. 2010, 10, 326−331.
(b) Korotvicka, A.; Necas, D.; Kotora, M. Curr. Org. Chem. 2012, 16,
1170−1214. (c) Necas, D.; Kotora, M. Curr. Org. Chem. 2007, 11, 1566−
1591.
The newly developed method also works for literature-known
reactions and, hence, will be broadly applicable. Further
investigations for the development of new transformations and
application studies on reported systems are currently underway in
our laboratory.
(9) Long, H.; Kim, K.; Pivovar, B. S. J. Phys. Chem. C 2012, 116, 9419−
9426.
(10) (a) Landini, D.; Maia, A.; Rampoldi, A. J. Org. Chem. 1986, 51,
3187−3191. (b) Edson, J. B.; Macomber, C. S.; Pivovar, B. S.; Boncella, J.
M. J. Membr. Sci. 2012, 399−400, 49−59.
(11) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.;
Sonoda, M.; Chatani, N. Nature 1993, 366, 529−531.
(12)Jun, C.-H.;Hong, J.-B.;Kim,Y.-H.;Chung, K.-Y. Angew. Chem., Int.
Ed. 2000, 39, 3440−3442.
ASSOCIATED CONTENT
* Supporting Information
■
S
TheSupportingInformationisavailablefreeofchargeontheACS
Detailed experimental procedures and analytical data of all
synthesized compounds (PDF)
AUTHOR INFORMATION
Corresponding Author
■
D
Org. Lett. XXXX, XXX, XXX−XXX