9328
D. M. Pore et al. / Tetrahedron Letters 47 (2006) 9325–9328
Sastry, M. N. V.; Yao, C.-F. Tetrahedron Lett. 2005, 46,
4971.
product even though potassium phosphate catalyzed
oxidative coupling of thiols to disulfides has already
been reported.21
9. (a) Kim, K. M.; Ryu, E. K. Tetrahedron Lett. 1996, 37,
1441; (b) Firouzabadi, H.; Iranpoor, N.; Hazarkhani, H.
J. Org. Chem. 2001, 66, 7527; (c) Firouzabadi, H.;
Iranpoor, N.; Jafari, A. A. Synlett 2005, 2, 299.
10. (a) Yadav, J. S.; Reddy, B. Y. S.; Baishya, G. J. Org.
Chem. 2003, 68, 7098; (b) Ranu, B. C.; Dey, S. S.; Hajra,
A. Tetrahedron 2003, 59, 2417.
11. Yadav, J. S.; Reddy, B. V. S.; Baishya, G. J. Org. Chem.
2003, 59, 2117.
12. Zolfigol, M. A. Tetrahedron 2001, 57, 9509.
13. Yakaih, T.; Venkat Reddy, G.; Narsaiah, P.; Shanthan
Rao, P. Synth. Commun. 2005, 35, 1307.
When the catalytic efficiency of potassium phosphate
was compared with other reported catalysts (Table 3),
it was revealed that potassium phosphate is better suited
for this reaction for the reasons of low cost, ease of
availability, yields, reaction temperature as well as
work-up procedure. In all cases, on completion of the
reaction, chloroform was added, the catalyst was
filtered, washed with chloroform and the solvent was
removed to yield the almost pure thia-Michael addition
product.24
14. Chen, W. Y.; Lu, J. Synlett 2005, 15, 2293.
15. Jin, T.-S.; Tian, R.-F.; Liu, L.-B.; Zhao, Y.; Li, T. S.
Synth. Commun. 2006, 36, 1823.
In summary, we have described herein the usefulness of
silica sulfuric acid as well as potassium phosphate as
highly efficient and cost effective catalysts for the thia-
Michael addition reaction under solvent-free conditions,
(except chalcones) at room temperature. Short reaction
times, high yields, and avoidance of anhydrous condi-
tions should make this protocol a useful alternative to
existing methods.
16. Hajipour, A. Synthesis 2006, 1680.
17. Schulze, A.; Pagaona, G.; Giallis, A. Synth. Commun.
2006, 34, 1147.
18. (a) Pore, D. M.; Desai, U. V.; Mane, R. B.; Wadgaonkar,
P. P. Synth. Commun. 2004, 34, 2135; (b) Pore, D. M.;
Desai, U. V.; Mane, R. B.; Wadgaonkar, P. P. Indian J.
Chem. 2006, B, 1291; (c) Thopate, T. S.; Desai, U. V.;
Pore, D. M.; Wadgaonkar, P. P. Cat. Commun. 2006, 7,
506; (d) Thopate, T. S. Unpublished results from the
Ph.D. thesis of T. S. Thopate.
19. Chakraborti, A. K.; Garg, S. K.; Kumar, R. Synlett 2005,
9, 1370.
References and notes
20. (a) Desai, U. V.; Pore, D. M.; Mane, R. B.; Solabannavar,
S. B.; Wadgaonkar, P. P. Synth. Commun. 2004, 34, 25;
(b) Desai, U. V.; Pore, D. M.; Mane, R. B.; Solabannavar,
S. B.; Wadgaonkar, P. P. Synth. Commun. 2004, 34, 19.
21. Joshi, A. V.; Bhusare, S.; Baidossi, M.; Qafisheh, N.;
Sasson, Y. Tetrahedron Lett. 2005, 46, 3583.
22. Ranu, B. C.; Dey, S. S.; Samanta, S. ARKIVOC 2005, 3,
44.
23. Jones, J. B.; Middleton, H. W. Can. J. Chem. 1970, 48,
3819.
1. (a) Fluharty, A. L. In The Chemistry of the Thiol Group;
Patai, S., Ed.; Wiley: New York, 1974, Part 2, p 589; (b)
Clark, J. H. Chem. Rev. 1980, 80, 429; (c) Fujita, E.;
Nagao, Y. J. Bioorg. Med. Chem. 1977, 6, 287.
2. (a) Trost, B. M.; Keeley, D. E. J. Org. Chem. 1975, 40,
2013; (b) Shono, T.; Matsumura, Y.; Kashimura, S.;
Hatanaka, K. J. Am. Chem. Soc. 1979, 107, 4752; (c)
Nishimura, K.; Ono, M.; Nagaoka, Y.; Tomioka, K. J.
Am. Chem. Soc. 1997, 119, 12974.
24. General procedure: A mixture of a,b-unsaturated ketone
(2 mmol), thiol (2 mmol) and SSA (0.2 g, 25 mol %)/
K3PO4 (0.05 g, 25 mol %) was stirred at room temperature
for the appropriate time (Table 1 or 2). On completion of
the reaction (TLC), chloroform (20 mL) was added and
the reaction mixture was filtered. The catalyst was washed
with chloroform (2 · 10 mL). Evaporation of the solvent
followed by short column chromatography over silica gel
(petroleum ether/ethyl acetate, 95:5, v/v) afforded pure
thia-Michael adducts, which were characterized by spec-
tral methods.
3. Bakuzia, P.; Bakuzis, M. L. F. J. Org. Chem. 1981, 46,
235.
4. Cherkauskas, J. P.; Cohen, T. J. Org. Chem. 1992, 57, 6.
5. Coben, T.; Mura, A. J., Jr.; Shull, D. W.; Fogel, E. R.;
Ruffner, R. J.; Falck, J. R. J. Org. Chem. 1976, 41, 3218.
6. Trost, B. M.; Keeley, D. E. J. Org. Chem. 1975, 40, 2013.
7. (a) Hiemstra, H.; Wiberg, H. J. Am. Chem. Soc. 1981, 103,
417; (b) Suzuki, K.; Ilekawa, A.; Mukaiyama, T. Bull.
Chem. Soc. Jpn. 1982, 55, 3277; (c) Emori, E.; Arai, T.;
Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1998, 120,
4043.
8. (a) Kobayashi, S.; Ogawa, C.; Kawamura, M.; Sugiura,
M. Synlett 2001, 983; (b) Alam, M. M.; Varala, R.;
Adapa, S. R. Tetrahedron Lett. 2003, 44, 5515; (c) Garg, S.
K.; Kumar, R.; Chakraborti, A. K. Tetrahedron Lett.
2005, 46, 1721; (d) Bandini, M.; Cozzi, P. G.; Giacomini,
M.; Melchiorre, P.; Selva, S.; Umani-Ronchi, A. J. Org.
Chem 2002, 67, 3700; (e) Srivastava, N.; Banik, B. K. J.
Org. Chem. 2003, 68, 2109; (f) Chu, C.-M.; Gao, S.;
Spectral data: 4-[benzylthio]-dihydrofuran-2[3H]-one23
(3ed, Table 1): IR (neat): 2924, 1789 1602, 794,
1
702 cmꢀ1; H NMR (400 MHz, CDCl3): dH 2.4 (1H, AB
q, J = 18 Hz, 7 Hz), 2.73 (1H, AB q, J = 18 Hz, 7 Hz),
3.45 (1H, q, J = 7 Hz), 3.79 (2H, s), 4.04 (1H, AB q,
J = 10 Hz, 7 Hz), 4.36 (1H, AB q, J = 10 Hz, 7 Hz), 7.33
(5H, m); 13C NMR (100 MHz, CDCl3): dC 35.35, 36.05,
37.95, 72.93, 127.57, 128.63, 128.80, 137.31, 174.91.