F
C. Raviola, D. Ravelli
Letter
Synlett
H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan,
D. W. C. Science 2016, 352, 1304. (e) Choi, G. J.; Zhu, Q.; Miller, D.
C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268.
4-[2-(Phenylsulfonyl)ethyl]-1,3-dioxolan-2-one (3c)
Colorless oil; yield: 73 mg (57%). IR (neat): 2942, 1768, 1131
cm−1 1H NMR (CDCl3, 300 MHz): δ = 7.95–7.90 (m, 2 H), 7.75–
.
(12) Ravelli, D.; Protti, S.; Fagnoni, M. Acc. Chem. Res. 2016, 49, 2232.
(13) Ravelli, D.; Fagnoni, M.; Fukuyama, T.; Nishikawa, T.; Ryu, I. ACS
Catal. 2018, 8, 701.
7.70 (m, 1 H), 7.65–7.60 (m, 2 H), 4.95–4.90 (m, 1 H), 4.65–4.50
(m, 1 H), 4.15–4.10 (m, 1 H), 3.35–3.20 (m, 2 H), 2.40–2.10 (m, 2
H). 13C NMR (CDCl3, 75 MHz): δ = 154.4, 138.4, 134.2 (CH), 129.5
(CH), 127.9 (CH), 74.5 (CH), 68.8 (CH2), 51.6 (CH2), 27.3 (CH2).
Anal. Calcd for C11H12O5S: C, 51.55; H, 4.72. Found: C, 51.6; H,
4.7.
(14) Kamijo, S. Top. Heterocycl. Chem. 2018, 54, 71.
(15) Hoffmann, N. J. Phys. Org. Chem. 2015, 28, 121.
(16) Fan, X.-Z.; Rong, J.-W.; Wu, H.-L.; Zhou, Q.; Deng, H.-P.; Tan, J. D.;
Xue, C.-W.; Wu, L.-Z.; Tao, H.-R.; Wu, J. Angew. Chem. Int. Ed.
2018, 57, 8514.
4-Methyl-4-[2-(phenylsulfonyl)ethyl]-1,3-dioxolan-2-one
(3g)
(17) (a) Manfrotto, C.; Mella, M.; Freccero, M.; Fagnoni, M.; Albini, A.
J. Org. Chem. 1999, 64, 5024. (b) Geraghty, N. W. A.; Lally, A.
Chem. Commun. 2006, 4300. (c) Dondi, D.; Protti, S.; Albini, A.;
Mañas Carpio, S.; Fagnoni, M. Green Chem. 2009, 11, 1653.
(d) Kamijo, S.; Kamijo, K.; Maruoka, K.; Murafuji, T. Org. Lett.
2016, 18, 6516. (e) Kawaai, K.; Yamaguchi, T.; Yamaguchi, E.;
Endo, S.; Tada, N.; Ikari, A.; Itoh, A. J. Org. Chem. 2018, 83, 1988.
(f) Papadopoulos, G. N.; Voutyritsa, E.; Kaplaneris, N.; Kokotos,
C. G. Chem. Eur. J. 2018, 24, 1726.
(18) (a) Papadopoulos, G. N.; Limnios, D.; Kokotos, C. G. Chem. Eur. J.
2014, 20, 13811. (b) Papadopoulos, G. N.; Kokotos, C. G. J. Org.
Chem. 2016, 81, 7023. (c) Papadopoulos, G. N.; Kokotos, C. G.
Chem. Eur. J. 2016, 22, 6964.
(19) (a) Xia, J.-B.; Zhu, C.; Chen, C. J. Am. Chem. Soc. 2013, 135, 17494.
(b) Xia, J.-B.; Zhu, C.; Chen, C. Chem. Commun. 2014, 50, 11701.
(c) Bume, D. D.; Pitts, C. R.; Jokhai, R. T.; Lectka, T. Tetrahedron
2016, 72, 6031.
(20) Tachikawa, Y.; Cui, L.; Matsusaki, Y.; Tada, N.; Miura, T.; Itoh, A.
Tetrahedron Lett. 2013, 54, 6218.
White solid; yield: 66 mg (49%); mp 117–118 °C. IR (KBr): 2923,
1801, 1281, 1064 cm−1 1H NMR (CDCl3, 300 MHz): δ = 7.95–
.
7.90 (m, 2 H), 7.75–7.70 (m, 1 H), 7.65–7.60 (m, 2 H), 4.25–4.15
(m, 2 H), 3.25–3.20 (m, 2 H), 2.25–2.20 (m, 2 H), 1.15 (s, 3 H). 13
C
NMR (CDCl3, 75 MHz): δ = 153.5, 138.4, 134.2 (CH), 129.5 (CH),
127.9 (CH), 81.5, 74.0 (CH), 50.7 (CH2), 31.6 (CH2), 24.2 (CH3).
Anal. Calcd for C12H14O5S: C, 53.32; H, 5.22. Found: C, 53.3; H,
5.2.
(22) Ravelli, D.; Montanaro, S.; Zema, M.; Fagnoni, M.; Albini, A. Adv.
Synth. Catal. 2011, 353, 3295.
(23) The decatungstate anion is known to be unstable under strongly
basic conditions, although it tolerates the presence of NaHCO3
as an insoluble base; see: Ravelli, D.; Albini, A.; Fagnoni, M.
Chem. Eur. J. 2011, 17, 572.
(24) Similar behavior has recently been observed in the case of HAT
from alkanols and alkanediols; see: Salamone, M.; Ortega, V. B.;
Martin, T.; Bietti, M. J. Org. Chem. 2018, 83, 5539.
(25) (a) Iyer, A.; Clay, A.; Jockusch, S.; Sivaguru, J. J. Phys. Org. Chem.
2017, 30, e3738. (b) Soep, B.; Mestdagh, J.-M.; Briant, M.;
Gaveau, M.-A.; Poisson, L. Phys. Chem. Chem. Phys. 2016, 18,
22914. (c) Santhamurthy, A. R.; Rao, T. A. P.; Sobhanadri, J.;
Murthy, V. R. K. J. Phys. Soc. Jpn. 1998, 67, 1220.
(26) (a) Rosenthal, I.; Elad, D. J. Org. Chem. 1968, 33, 805. (b) Graalfs,
H.; Fröhlich, R.; Wolff, C.; Mattay, J. Eur. J. Org. Chem. 1999,
1057.
(27) Dondi, D.; Fagnoni, M.; Albini, A. Chem. Eur. J. 2006, 12, 4153.
(28) De Waele, V.; Poizat, O.; Fagnoni, M.; Bagno, A.; Ravelli, D. ACS
Catal. 2016, 6, 7174.
(29) Mosca, R.; Fagnoni, M.; Mella, M.; Albini, A. Tetrahedron 2001,
57, 10319.
(30) Yamada, K.; Fukuyama, T.; Fujii, S.; Ravelli, D.; Fagnoni, M.; Ryu,
I. Chem. Eur. J. 2017, 23, 8615.
(21) C–H Functionalization of Aliphatic Oxygen Heterocycles;
General Procedure
A solution of phenyl vinyl sulfone (2; 0.1 M), the chosen ali-
phatic oxygen heterocycle 1 (0.3–5 M), the photocatalyst
(TBADT: 2 mol%; 9-fluorenone or thioxanthone: 20 mol%), and
the base (NaHCO3 or Cs2CO3; 1 equiv, if required) in the chosen
medium (MeCN or CH2Cl2) was purged with N2 for 5 min then
irradiated. The reaction course and the product distribution
were monitored by GC analysis. The photolyzed solution was
concentrated in vacuo, and the resulting residue was purified by
column chromatography (silica gel, cyclohexane–EtOAc) to give
product(s) 3 and/or 4.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2019, 30, A–F