Organic Letters
Letter
(i) Alagiri, K.; Prabhu, K. R. Org. Biomol. Catal. 2012, 10, 835. (j) Xie,
J.; Li, H.; Zhou, J.; Cheng, Y.; Zhu, C. Angew. Chem., Int. Ed. 2012, 51,
1252. (k) Alagiri, K.; Devadig, P.; Prabhu, K. R. Tetrahedron Lett.
2012, 53, 1456. (l) Rueping, M.; Weirich, T. E.; Mayer, J. Chem.Eur.
J. 2012, 18, 3478. (m) Meng, Q.-Y.; Liu, Q.; Zhong, J.-J.; Zhang, H.-
H.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Org. Lett. 2012, 14,
5992. (n) Zhang, G.; Ma, Y.; Wang, S.; Zhang, Y.; Wang, R. J. Am.
Chem. Soc. 2012, 134, 12337. (o) Ratnikov, M. O.; Xu, X.; Doyle, M.
P. J. Am. Chem. Soc. 2013, 135, 9475. (p) Kumar, S.; Kumar, P.; Jain, S.
L. RSC Adv. 2013, 3, 24013.
conditions. On the basis of our control studies, we assume that
the SO2Cl2-initiated CDC reaction occurs through a radical-
initiated autoxidation mechanism. Although the reaction
mechanism is classic and simple, the SO2Cl2-initiated aerobic
CDC reaction represents one of the most efficient and green
C−H bond functionalization reactions since a catalytic amount
(2−6 mol %) of an inexpensive reagent is required and the
decomposition products of SO2Cl2 (HCl, SO2, and H2SO4) can
be easily removed by evaporation or aqueous workup.
(6) Catalytic metal-free CDC reactions of tertiary amines using
́
́
oxygen as a terminal oxidant: (a) Pinter, A.; Sud, A.; Sureshkumar, D.;
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and compound characterization data.
This material is available free of charge via the Internet at
■
Klussmann, M. Angew. Chem., Int. Ed. 2010, 49, 5004. (b) Pan, Y.;
Wang, S.; Kee, C. W.; Dubuisson, E.; Yang, Y.; Loh, K. P.; Tan, C.-H.
Green Chem. 2011, 13, 334. (c) Pan, Y.; Kee, C. W.; Chen, L.; Tan, C.-
S
H. Green Chem. 2011, 13, 2682. (d) Hari, D. P.; Konig, B. Org. Lett.
̈
2011, 13, 3852. (e) Alagiri, K.; Devadig, P.; Prabhu, K. R. Chem.Eur.
J. 2012, 18, 5160. (f) Liu, L.; Wang, Z.; Fu, X.; Yan, C.-H. Org. Lett.
2012, 14, 5692. (g) Dhineshkumar, J.; Lamani, M.; Alagiri, K.; Prabhu,
K. R. Org. Lett. 2013, 15, 1092. (h) Nobuta, T.; Fujiya, A.; Yamaguchi,
T.; Tada, N.; Miura, T.; Itoh, A. RSC Adv. 2013, 3, 10189.
(7) Tanoue, A.; Yoo, W.-J.; Kobayashi, S. Adv. Synth. Catal. 2013,
355, 269.
AUTHOR INFORMATION
Corresponding Author
■
Notes
(8) Ciminale, F.; Lopez, L.; Forinola, G. M.; Sportelli, S. Tetrahedron
Lett. 2001, 42, 5689.
The authors declare no competing financial interest.
(9) Kovacic, P.; Sparks, A. K. J. Org. Chem. 1961, 26, 1310.
(10) A plausible explanation for the poor reactivity of the ortho-
substituted N-aryl amine 1d could be due to the inability of the N-aryl
amine to adopt a planar structure necessary to stabilize the radical
intermediate. We thank a reviewer for this suggestion.
(11) The oxidation potential of chlorine is reported to be 1.40 V:
Chow, B. F. J. Am. Chem. Soc. 1935, 57, 1440.
(12) We also examined vitamin E (DL- α-tocopherol) as an
antioxidant (1 equiv) and found that the CDC reaction could not
be suppressed completely (39% of 2a was obtained).
ACKNOWLEDGMENTS
■
This work was partially supported by a Grant-in-Aid for Science
Research from the Japan Society for the Promotion of Science
(JSPS), the Global COE Program (Chemistry Innovation
through Cooperation of Science and Engineering), The
University of Tokyo, the Japan Science and Technology
Agency (JST), and the Ministry of Education, Culture, Sports,
Science and Technology (MEXT), Japan.
(13) Takacs, G. A. J. Chem. Eng. Data 1978, 23, 174.
(14) When a catalytic amount of sulfuryl chloride was added to the
solution of 1a in MeCN, the colorless solution immediately turned
yellow (the solution of N,N-dimethyl-p-toluidine (3) turned blue),
although it turned colorless again when a nucleophile or a
stoichiometric amount of sulfuryl chloride was added. These color
changes may suggest the facile formation of radical species such as the
intermediate B shown in Scheme 2. An alternative pathway to generate
chlorine radicals could be through the direct electron transfer between
the electron-rich N-aryl amine and sulfuryl chloride, followed by the
decomposition of sulfuryl chloride radical anion. We thank a reviewer
for this suggestion.
(15) An alternative mechanistic pathway to access intermediate C is
through the deprotonation of aminium radical B with 1a.
(16) 1H NMR spectra of the crude reaction mixture of 1a and
SO2Cl2 in MeCN under an atmosphere of O2 suggests the presence of
alkyl peroxide intermediate E. Please see the Supporting Information
for additional details.
REFERENCES
■
(1) Reviews on green chemistry: (a) Clark, J. H. Green Chem. 1999,
1, 1. (b) Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301.
(c) Sheldon, R. A. Chem. Soc. Rev. 2012, 41, 1437.
(2) Reviews on CDC reactions: (a) Li, C.-J. Acc. Chem. Res. 2009, 42,
335. (b) Scheuermann, C. J. Chem.Asian J. 2010, 5, 436. (c) Yeung,
C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215. (d) Li, C.-J. Sci. China
Chem. 2011, 54, 1815. (e) Klussmann, M.; Sureshkumar, D. Synthesis
2011, 3, 353. (f) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012,
41, 3464. (g) Girard, S. A.; Knauber, T.; Li, C.-J. Angew. Chem., Int. Ed.
2013, 53, 74.
(3) (a) Murahashi, S.; Komiya, N.; Terai, H.; Nakae, T. J. Am. Chem.
Soc. 2003, 125, 15312. (b) Murahashi, S.; Komiya, N.; Terai, H. Angew.
Chem., Int. Ed. 2005, 44, 6931. (c) Murahashi, S.; Nakae, T.; Terai, H.;
Komiya, N. J. Am. Chem. Soc. 2008, 47, 11005.
(4) (a) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2004, 126, 11810. (b) Li, Z.;
Li, C.-J. Org. Lett. 2004, 6, 4997. (c) Li, Z.; Li, C.-J. J. Am. Chem. Soc.
2005, 127, 3672. (d) Li, Z.; Li, C.-J. J. Am. Chem. Soc. 2005, 127, 6968.
(e) Basle,
́
O.; Li, C.-J. Green Chem. 2007, 9, 1047. (f) Basle,
́
O.; Li, C.-
J. Org. Lett. 2008, 10, 3661. (g) Basle,
2009, 4124. (h) Zeng, T.; Song, G.; Moores, A.; Li, C.-J. Synlett 2010,
13, 2002.
́
O.; Li, C.-J. Chem. Commun.
(5) Examples of transition-metal-catalyzed aerobic CDC reactions of
tertiary amines: (a) Yu, A.; Gu, Z.; Chen, D.; He, W.; Tan, P.; Xiang, J.
Catal. Commun. 2009, 11, 162. (b) Shen, Y.; Li, M.; Wang, S.; Zhan,
T.; Tan, Z.; Guo, C.-C. Chem. Commun. 2009, 953. (c) Sureshkumar,
D.; Sud, A.; Klussmann, M. Synlett 2009, 10, 1558. (d) Singhai, S.;
Jain, S. L.; Sain, B. Chem. Commun. 2009, 2371. (e) Condie, A. G.;
́ ́
Gonzalez-Gomez, J. C.; Stephenson, C. R. J. J. Am. Chem. Soc. 2010,
132, 1464. (f) Huang, L.; Niu, T.; Wu, J.; Zhang, Y. J. Org. Chem.
2011, 76, 1759. (g) Rueping, M.; Vila, C.; Koenigs, R. M.; Poscharny,
K.; Fabry, D. C. Chem. Commun. 2011, 47, 2360. (h) Alagiri, K.;
Kumara, G. S. R.; Prabhu, K. R. Chem. Commun. 2011, 47, 11787.
2349
dx.doi.org/10.1021/ol500661t | Org. Lett. 2014, 16, 2346−2349