Organic Letters
Letter
2
012, 3, 1589. (e) Cui, X.; Xu, X.; Lu, H.; Zhu, S.; Wojtas, L.; Zhang, X.
REFERENCES
■
P. J. Am. Chem. Soc. 2011, 133, 3304.
(
2
1) (a) Chen, D. Y.-K.; Pouwer, R. H.; Richard, J.-A. Chem. Soc. Rev.
012, 41, 4631. (b) Wessjohann, L. A.; Brandt, W.; Thiemann, T.
Chem. Rev. 2003, 103, 1625. (c) Namyslo, J. C.; Kaufmann, D. E. Chem.
Rev. 2003, 103, 1485. (d) Lee-Ruff, E.; Mladenova, G. Chem. Rev. 2003,
03, 1449. (e) Seiser, T.; Saget, T.; Tran, D. N.; Cramer, N. Angew.
Chem., Int. Ed. 2011, 50, 7740. (f) Hansen, T. V.; Stenstrøm, Y.
Naturally Occurring Cyclobutanes. In Organic Synthesis: Theory and
Applications; Hudlicky, T., Ed.; Elsevier: Oxford, 2001; Vol. 5, p 1.
(
(
(
12) Zhang, F.-G.; Marek, I. J. Am. Chem. Soc. 2017, 139, 8364.
13) Sakai, K.; Kochi, T.; Kakiuchi, F. Org. Lett. 2013, 15, 1024.
14) (a) Evans, D. A.; Black, W. C. J. Am. Chem. Soc. 1993, 115, 4497.
(
b) Evans, D. A.; Trotter, B. W.; Cote, B.; Coleman, P. J. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 2741.
15) Chatgilialoglu, C.; Mozziconacci, O.; Tamba, M.; Bobrowski, K.;
1
(
Kciuk, G.; Bertrand, M. P.; Gastaldi, S.; Timokhin, V. I. J. J. Phys. Chem.
A 2012, 116, 7623.
(
g) Nakamura, M.; Chi, Y.-M.; Yan, W.-M.; Yonezawa, A.; Nakasugi, Y.;
(
16) (a) Pirenne, V.; Kurtay, G.; Voci, S.; Bouffier, L.; Sojic, N.;
Robert, F.; Bassani, D. M.; Landais, Y. Org. Lett. 2018, 20, 4521.
b) Sun, J.; Li, P.; Guo, L.; Yu, F.; He, Y.-P.; Chu, L. Chem. Commun.
018, 54, 3162.
17) Arceo, E.; Montroni, E.; Melchiorre, P. Angew. Chem., Int. Ed.
014, 53, 12064.
18) (a) Albini, A. Synthesis 1981, 1981, 249. (b) Lu, Z.; Yoon, T. P.
Yoshizawa, T.; Hashimoto, F.; Kinjo, J.; Nohara, T.; Sakurada, S. Planta
Med. 2001, 67, 114. (h) Lee, F.-P.; Chen, Y.-C.; Chen, J.-J.; Tsai, I.-L.;
Chen, I.-S. Helv. Chim. Acta 2004, 87, 463. (i) Liu, R.; Zhang, M.;
Wyche, T. P.; Winston-McPherson, G. N.; Bugni, T. S.; Tang, W.
Angew. Chem., Int. Ed. 2012, 51, 7503.
2) (a) Cavitt, M. A.; Phun, L. H.; France, S. Chem. Soc. Rev. 2014, 43,
04. (b) Schneider, T. F.; Werz, D. B. Org. Lett. 2011, 13, 1848.
c) Schneider, T. F.; Kaschel, J.; Werz, D. B. Angew. Chem., Int. Ed.
014, 53, 5504.
3) For selected reports on the synthesis of cyclopropanes, see:
a) Lebel, H.; Marcoux, J.-F.; Molinaro, C.; Charette, A. B. Chem. Rev.
003, 103, 977. (b) Ebner, C.; Carreira, E. M. Chem. Rev. 2017, 117,
1651. For selected reports on the synthesis of cyclobutanes, see:
c) Poplata, S.; Troster, A.; Zou, Y.-Q.; Bach, T. Chem. Rev. 2016, 116,
̈
748. (d) Misale, A.; Niyomchon, S.; Maulide, N. Acc. Chem. Res. 2016,
9, 2444. (e) Xu, Y.; Conner, M. L.; Brown, M. K. Angew. Chem., Int. Ed.
015, 54, 11918. (f) Luparia, M.; Oliveira, M. T.; Audisio, D.; Frebault,
F.; Goddard, R.; Maulide, N. Angew. Chem., Int. Ed. 2011, 50, 12631.
g) Fawcett, A.; Biberger, T.; Aggarwal, V. K. Nat. Chem. 2019, 11, 117.
h) Andersen, C.; Ferey, V.; Daumas, M.; Bernardelli, P.; Guerinot, A.;
(
2
(
2
(
8
(
2
(
Angew. Chem., Int. Ed. 2012, 51, 10329. (c) Farney, E. P.; Yoon, T. P.
Angew. Chem., Int. Ed. 2014, 53, 793. (d) Alonso, R.; Bach, T. Angew.
Chem., Int. Ed. 2014, 53, 4368.
(19) UV-mediated sulfonylcyanation of olefins was reported earlier,
but the olefin was used as a cosolvent. See: Pews, R. G.; Evans, T. E. J.
Chem. Soc. D 1971, 1397.
(20) Sulfonylcyanation of n-octene using 9,10-dimethylanthracene, a
strong electron donor, but with a low triplet energy, led to the formation
of the desired nitrile with Φ = 0.13 (λ = 365 nm) (SI).
̈
(21) Gorner, H.; Kuhn, H. J. J. Phys. Chem. 1986, 90, 5946.
(22) (a) Yang, N. C.; Kimura, M.; Eisenhardt, W. J. Am. Chem. Soc.
1973, 95, 5058. (b) Koyanagi, M.; Goodman, L. J. Chem. Phys. 1971,
55, 2959.
(23) Kakiuchi, K.; Minato, K.; Tsutsumi, K.; Morimoto, T.; Kurosawa,
H. Tetrahedron Lett. 2003, 44, 1963.
(24) Tanko, J. M.; Phillips, J. P. J. Am. Chem. Soc. 1999, 121, 6078.
(25) (a) Kagan, H. B.; Namy, J. L. In Topics in Organometallic
Chemistry, Lanthanides: Chemistry and Use in Organic Synthesis;
Kobayashi, S., Ed.; Springer: Berlin, 1999; p 155. (b) Procter, D. J.;
Flowers, R. A., II; Skrydstrup, T. Organic Synthesis Using Samarium
Diiodide: A Practical Guide; RSC Publishing, 2010.
(
(
2
1
(
9
4
2
ex
(
(
́
Cossy, J. Org. Lett. 2019, 21, 2285.
4) (a) Rubin, M.; Rubina, M.; Gevorgyan, V. Chem. Rev. 2007, 107,
117. (b) Zhu, Z.-B.; Wei, Y.; Shi, M. Chem. Soc. Rev. 2011, 40, 5534.
c) Vicente, R. Synthesis 2016, 48, 2343. (d) Dian, L.; Marek, I. Angew.
Chem., Int. Ed. 2018, 57, 3682. (e) Didier, D.; Delaye, P.-O.; Simaan,
M.; Island, B.; Eppe, G.; Eijsberg, H.; Kleiner, A.; Knochel, P.; Marek, I.
Chem. - Eur. J. 2014, 20, 1038. (f) Zhang, F.-G.; Eppe, G.; Marek, I.
Angew. Chem., Int. Ed. 2016, 55, 714. (g) Roy, S. R.; Didier, D.; Kleiner,
(
3
(
(
26) (a) Szostak, M.; Spain, M.; Eberhart, A. J.; Procter, D. J. J. Am.
Chem. Soc. 2014, 136, 2268. (b) Hansen, A. M.; Lindsay, K. B.;
Sudhadevi Antharjanam, P. K.; Karaffa, J.; Daasbjerg, K.; Flowers, R. A.;
Skrydstrup, T. J. Am. Chem. Soc. 2006, 128, 9616.
A.; Marek, I. Chem. Sci. 2016, 7, 5989. (h) Mu
Soc. Rev. 2016, 45, 4552.
5) Roy, S. R.; Eijsberg, H.; Bruffaerts, J.; Marek, I. Chem. Sci. 2017, 8,
34.
6) Ferjanci
979.
7) (a) Yamago, S.; Ejiri, S.; Nakamura, E. Chem. Lett. 1994, 23, 1889.
b) Legrand, N.; Quiclet-Sire, B.; Zard, S. Z. Tetrahedron Lett. 2000, 41,
̈
ller, D. S.; Marek, I. Chem.
(
3
(
2
(
(
9
(
27) Simpkins, N. S. Sulphones in Organic Synthesis, Tetrahedron
̌
̌
c, Z.; Cekovic, Z.; Saicic, R. N. Tetrahedron Lett. 2000, 41,
̌ ́ ́ ̌ ́
Organic Chemistry Series; Baldwin, J. E., Magnus, P. D., Eds.;
Pergamon Press: Oxford, 1993, Vol. 10, p 262.
(
28) (a) Johnson, C. R.; De Jong, R. L. J. Org. Chem. 1992, 57, 594.
b) Dowling, M. S.; Vanderwal, C. D. J. Org. Chem. 2010, 75, 6908.
29) Jung, M. E.; Deng, G. J. J. Org. Chem. 2012, 77, 11002.
(
(
815. (c) Ueda, M.; Doi, N.; Miyagawa, H.; Sugita, S.; Takeda, N.;
Shinada, T.; Miyata, O. Chem. Commun. 2015, 51, 4204. (d) Doi, N.;
Takeda, N.; Miyata, O.; Ueda, M. J. Org. Chem. 2016, 81, 7855.
(
8) (a) Kimoto, H.; Muramatsu, H.; Inukai, K. Bull. Chem. Soc. Jpn.
977, 50, 2815. (b) Kinney, W. A. Tetrahedron Lett. 1993, 34, 2715.
c) Leigh, W. J.; Zheng, K.; Nguyen, N.; Werstiuk, N. H.; Ma, J. J. Am.
Chem. Soc. 1991, 113, 4993.
1
(
(
(
9) Dange, N. S.; Robert, F.; Landais, Y. Org. Lett. 2016, 18, 6156.
10) (a) Narasaka, K.; Hayashi, Y.; Shimadzu, H.; Niihata, S. J. Am.
Chem. Soc. 1992, 114, 8869. (b) Schotes, C.; Mezzetti, A. Angew. Chem.,
Int. Ed. 2011, 50, 3072. (c) Kang, T.; Ge, S.; Lin, L.; Lu, Y.; Liu, X.;
Feng, X. Angew. Chem., Int. Ed. 2016, 55, 5541. (d) Kumar, R.; Tamai,
E.; Ohnishi, A.; Nishimura, A.; Hoshimoto, Y.; Ohashi, M.; Ogoshi, S.
Synthesis 2016, 48, 2789. (e) Garcia-Morales, C.; Ranieri, B.; Escofet, I.;
Lopez-Suarez, L.; Obradors, C.; Konovalov, A. I.; Echavarren, A. M. J.
Am. Chem. Soc. 2017, 139, 13628.
(
11) (a) Protopopova, M. N.; Doyle, M. P.; Muller, P.; Ene, D. G. J.
̈
Am. Chem. Soc. 1992, 114, 2755. (b) Lou, Y.; Horikawa, M.; Kloster, R.
A.; Hawryluk, N. A.; Corey, E. J. J. Am. Chem. Soc. 2004, 126, 8916.
(
c) Goto, T.; Takeda, K.; Shimada, N.; Nambu, H.; Anada, M.; Shiro,
M.; Ando, K.; Hashimoto, S.-I. Angew. Chem., Int. Ed. 2011, 50, 6803.
d) Boruta, D. T.; Dmitrenko, O.; Yap, G. P. A.; Fox, J. M. Chem. Sci.
(
E
Org. Lett. XXXX, XXX, XXX−XXX