Appl Biochem Biotechnol
3
7. Zhang, D., Allen, A. B., & Lax, A. R. (2012). Functional analyses of the digestive beta-glucosidase of
Formosan subterranean termites (Coptotermes formosanus). Journal of Insect Physiology, 58(1), 205–210.
8. Chuankhayan, P., Rimlumduan, T., Tantanuch, W., Mothong, N., Kongsaeree, P. T., Metheenukul, P., Svasti,
J., Jensen, O. N., & Cairns, J. R. K. (2007). Functional and structural differences between isoflavonoid β-
glycosidases from Dalbergia sp. Archives of Biochemistry and Biophysics, 468(2), 205–216.
3
3
4
4
9. Srisomsap, C., Sawangareetrakul, P., Subhasitanont, P., Chokchaichamnankit, D., Chiablaem, K.,
Bhudhisawasdi, V., Wongkham, S., & Svasti, J. (2010). Proteomic studies of cholangiocarcinoma and
hepatocellular carcinoma cell secretomes. Journal of Biomedicine and Biotechnology, 2010, 437143.
0. Perkins, D. N., Pappin, D. J. C., Creasy, D. M., & Cottrell, J. S. (1999). Probability-based protein
identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20(18),
3551–3567.
1. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005).
Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), The proteomics
protocols handbook (pp. 571–607). New York: Humana.
4
4
4
2. Petersen, T. N., Brunak, S., von Heijne, G., & Nielsen, H. (2011). SignalP 4.0: discriminating signal
peptides from transmembrane regions. Nature Methods, 8(10), 785–786.
4. Steentoft, C., Vakhrushev, S. Y., Joshi, H. J., Kong, Y., Vester-Christensen, M. B., Schjoldager, K. T.,
Lavrsen, K., Dabelsteen, S., Pedersen, N. B., Marcos-Silva, L., Gupta, R., Bennett, E. P., Mandel, U.,
Brunak, S., Wandall, H. H., Levery, S. B., & Clausen, H. (2013). Precision mapping of the human O-
GalNAc glycoproteome through SimpleCell technology. EMBO Journal, 32(10), 1478–1488.
5. Altschul, S. F., Wootton, J. C., Gertz, E. M., Agarwala, R., Morgulis, A., Schaffer, A. A., & Yu, Y. K.
4
(2005). Protein database searches using compositionally adjusted substitution matrices. FEBS Journal,
2
72(20), 5101–5109.
4
4
4
6. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary
genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729.
7. Zuckerkandl, E., & Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In V. Bryson
&
H. J. Vogel (Eds.), Evolving genes and proteins (pp. 97–166). New York: Academic.
8. Toonkool, P., Metheenukul, P., Sujiwattanarat, P., Paiboon, P., Tongtubtim, N., Ketudat-Cairns, M., Ketudat-
Cairns, J., & Svasti, J. (2006). Expression and purification of dalcochinase, a β-glucosidase from Dalbergia
cochinchinensis Pierre, in yeast and bacterial hosts. Protein Expression and Purification, 48(2), 195–204.
9. Svasti, J., Phongsak, T., & Sarnthima, R. (2003). Transglucosylation of tertiary alcohols using cassava β-
glucosidase. Biochemical and Biophysical Research Communications, 305(3), 470–475.
0. Jeng, W.-Y., Wang, N.-C., Lin, C.-T., Chang, W.-J., Liu, C.-I., & Wang, A. H. J. (2012). High-resolution
structures of Neotermes koshunensis β-glucosidase mutants provide insights into the catalytic mechanism
and the synthesis of glucoconjugates. Acta Crystallographica Section D, 68(7), 829–838.
4
5
5
5
5
5
1. Zhang, D., Lax, A. R., Henrissat, B., Coutinho, P., Katiya, N., Nierman, W. C., & Fedorova, N. (2012).
Carbohydrate-active enzymes revealed in Coptotermes formosanus (Isoptera: Rhinotermitidae) tran-
scriptome. Insect Molecular Biology, 21(2), 235–245.
2. Kouame, L. P., Kouame, F. A., Niamke, S. L., Faulet, B. M., & Kamenan, A. (2005). Biochemical and
catalytic properties of two β-glycosidases purified from workers of the termite Macrotermes subhyalinus
(
Isoptera: Termitidae). International Journal of Tropical Insect Science, 25, 103–113.
3. Ni, J., Tokuda, G., Takehara, M., & Watanabe, H. (2007). Heterologous expression and enzymatic
characterization of β-glucosidase from the drywood-eating termite, Neotermes koshunensis. Applied
Entomology and Zoology, 42(3), 457–463.
4. Tokuda, G., Saito, H., & Watanabe, H. (2002). A digestive β-glucosidase from the salivary glands of the
termite, Neotermes koshunensis (Shiraki): distribution, characterization and isolation of its precursor cDNA
by 5′- and 3′-RACE amplifications with degenerate primers. Insect Biochemistry and Molecular Biology,
32(12), 1681–1689.
5
5
5
5. Tokuda, G., Miyagi, M., Makiya, H., Watanabe, H., & Arakawa, G. (2009). Digestive β-glucosidases from
the wood-feeding higher termite, Nasutitermes takasagoensis: intestinal distribution, molecular characteri-
zation, and alteration in sites of expression. Insect Biochemistry and Molecular Biology, 39(12), 931–937.
6. Shikita, M., Fahey, J. W., Golden, T. R., Holtzclaw, W. D., & Talalay, P. (1999). An unusual case of
‘uncompetitive activation’ by ascorbic acid: purification and kinetic properties of a myrosinase from
Raphanus sativus seedlings. Biochemical Journal, 341, 725–732.
7. Cornette, R., Farine, J.-P., Abed-Viellard, D., Quennedey, B., & Brossut, R. (2003). Molecular character-
ization of a male-specific glycosyl hydrolase, Lma-p72, secreted on to the abdominal surface of the Madeira
cockroach Leucophaea maderae (Blaberidae, Oxyhaloinae). Biochemical Journal, 372(2), 535–541.