Organic Letters
Letter
relative proportions of these compounds were directly obtained
from the relative HPLC peak areas at λ = 210 nm (3n-3:3n-
6:3nA = 16:7:77; Figure 2, top). The selectivity for the serine-
ACKNOWLEDGMENTS
■
This work was partially supported by JSPS KAKENHI Grant
Number JP19K07007 (Y.N.) for Scientific Research (C). Y.N.
thanks Meijo University for financial support.
REFERENCES
■
(1) (a) Craik, D. J.; Fairlie, D. P.; Liras, S.; Price, D. Chem. Biol. Drug
Des. 2013, 81, 136−147. (b) Fosgerau, K.; Hoffmann, T. Drug Discovery
Today 2015, 20, 122−128. (c) Kaspar, A. A.; Reichert, J. M. Drug
Discovery Today 2013, 18, 807−817. (d) Ongey, E. L.; Pflugmacher, S.;
Neubauer, P. Pharmaceuticals 2018, 11, 68. (e) Araste, F.; Abnous, K.;
Hashemi, M.; Taghdisi, S. M.; Ramezani, M.; Alibolandi, M. J.
̈
̈
Controlled Release 2018, 292, 141−162. (f) Rader, A. F. B.; Weinmuller,
M.; Reichart, F.; Schumacher-Klinger, A.; Merzbach, S.; Gilon, C.;
Hoffman, A.; Kessler, H. Angew. Chem., Int. Ed. 2018, 57, 14414−
14438.
Figure 2. Reversed-phase HPLC traces for the (top) optimized and
(bottom) conventional conditions for the acylation of glycopeptide 1n.
(2) For recent reviews of research about antitumor vaccines from
mucin glycopeptide antigens, see: (a) Gaidzik, N.; Westerlind, U.;
modified product 3nA was much higher under these conditions
than under conventional conditions using 3-phenylpropionyl
chloride as the acylating agent (Figure 2, bottom, 3n-3:3n-
6:3nA = 6:47:47). Furthermore, the formation of diacylated
products was efficiently suppressed in our system compared with
the products formed under conventional conditions, as
confirmed by the XIC. It should also be noted that the most
abundant byproduct in our procedure was 3n-3, in which the 3-
OH of the glucose in 1n is acylated, while it was 3n-6 under
conventional conditions. These contrasting results are possibly
ascribable to the proximity between the β-hydroxyl group and 3-
OH in the transition state involving the metal template. We
speculate that intramolecular hydrogen bonding interactions
between the glucose and the peptide in 1n arrange the two
hydroxyl groups in proximal positions. Finally, 3nA was
successfully obtained in 29% isolated yield (71% yield based
on recovered starting material 1n).
In conclusion, a site-selective acylation methodology was
developed for β-hydroxyamides using CuOTf and pyridine
ketoxime esters as acylating agents. This reaction system
afforded monoacylated products with good regioselectivities.
In addition, this protocol facilitated the introduction of an acyl
group onto the serine OH in a glycopeptide bearing an
unprotected glucose with good site selectivity. Further
applications of this metal-template strategy are currently being
explored in our group.
́
Kunz, H. Chem. Soc. Rev. 2013, 42, 4421−4442. (b) Martínez-Saez, N.;
Peregrina, J. M.; Corzana, F. Chem. Soc. Rev. 2017, 46, 7154−7175.
(c) Hossain, M. K.; Wall, K. A. Vaccines 2016, 4, 25. (d) Taylor-
Papadimitriou, J.; Burchell, J. M.; Graham, R.; Beatson, R. Biochem. Soc.
Trans. 2018, 46, 659−668. (e) Nativi, C.; Papi, F.; Roelens, S. Chem.
Commun. 2019, 55, 7729−7736. (f) Loureiro, L. R.; Carrascal, M. A.;
Barbas, A.; Ramalho, J. S.; Novo, C.; Delannoy, P.; Videira, P. A.
Biomolecules 2015, 5, 1783−1809.
(3) For recent reviews of advancements in tumor-associated
carbohydrate antigens (TACAs)-based antitumor vaccines, see:
(a) Behren, S.; Westerlind, U. Molecules 2019, 24, 1004. (b) Bhatia,
S.; Dimde, M.; Haag, R. MedChemComm 2014, 5, 862−878. (c) Feng,
D.; Shaikh, A. S.; Wang, F. ACS Chem. Biol. 2016, 11, 850−863.
(d) Wilson, R. M.; Danishefsky, S. J. J. Am. Chem. Soc. 2013, 135,
14462−14472.
(4) For recent reviews of chemical tagging in peptides and proteins,
see: Boutureira, O.; Bernardes, G. J. L. Chem. Rev. 2015, 115, 2174−
2195.
(5) For examples of modification of serine in peptides, see:
(a) Gimenez, D.; Mooney, C. A.; Dose, A.; Sandford, G.; Coxon, C.
R.; Cobb, S. L. Org. Biomol. Chem. 2017, 15, 4086−4095. (b) Saavedra,
́
C. J.; Hernandez, D.; Boto, A. Chem. - Eur. J. 2018, 24, 599−607.
(6) Nishikawa, Y.; Takemoto, K.; Matsuda, K.; Tanaka, R.; Arashima,
A.; Ito, K.; Kamezawa, Y.; Hori, Y.; Hara, O. Org. Lett. 2018, 20, 3367−
3371.
(7) For recent reviews of site-selective reaction of glycosides, see:
(a) Dimakos, V.; Taylor, M. S. Chem. Rev. 2018, 118, 11457−11517.
(b) Lawandi, J.; Rocheleau, S.; Moitessier, N. Tetrahedron 2016, 72,
6283−6319. (c) Wang, T.; Demchenko, A. V. Org. Biomol. Chem. 2019,
ASSOCIATED CONTENT
■
̈
17, 4934−4950. (d) Jager, M.; Minnaard, A. J. Chem. Commun. 2016,
S
* Supporting Information
52, 656−664. (e) Blaszczyk, S. A.; Homan, T. C.; Tang, W. Carbohydr.
Res. 2019, 471, 64−77.
The Supporting Information is available free of charge on the
(8) For representative examples of site-selective reaction for
glycosides, see: (a) Xiao, G.; Cintron-Rosado, G. A.; Glazier, D. A.;
Xi, B.; Liu, C.; Liu, P.; Tang, W. J. Am. Chem. Soc. 2017, 139, 4346−
4349. (b) Lee, D.; Taylor, M. S. J. Am. Chem. Soc. 2011, 133, 3724−
3727. (c) Blaszczyk, S. A.; Xiao, G.; Wen, P.; Hao, H.; Wu, J.; Wang, B.;
Carattino, F.; Li, Z.; Glazier, D. A.; McCarty, B. J.; Liu, P.; Tang, W.
Angew. Chem., Int. Ed. 2019, 58, 9542−9546.
Complementary results, experimental procedures, and
spectroscopic data of all new compounds (PDF)
AUTHOR INFORMATION
■
(9) For a recent review of site-selective alteration of natural products,
see: (a) Shugrue, C. R.; Miller, S. J. Chem. Rev. 2017, 117, 11894−
11951. (b) Robles, O.; Romo, D. Nat. Prod. Rep. 2014, 31, 318−334.
(10) For representative examples of site-selective alteration of natural
products, see: (a) Lewis, C. A.; Miller, S. J. Angew. Chem., Int. Ed. 2006,
45, 5616−5619. (b) Wilcock, B. C.; Uno, B. E.; Bromann, G. L.; Clark,
M. J.; Anderson, T. M.; Burke, M. D. Nat. Chem. 2012, 4, 996−1003.
(c) Sakurai, K.; Takeshita, T.; Hiraizumi, M.; Yamada, R. Org. Lett.
2014, 16, 6318−6321. (d) Ueda, Y.; Mishiro, K.; Yoshida, K.; Furuta,
T.; Kawabata, T. J. Org. Chem. 2012, 77, 7850−7857.
Corresponding Authors
ORCID
Notes
The authors declare no competing financial interest.
D
Org. Lett. XXXX, XXX, XXX−XXX