E
T. Iio et al.
Cluster
Synlett
under FB–slug-flow conditions (entry 16). In contrast, the
reaction under conventional slug-flow conditions afforded
the product in 56% yield (entry 17).
Res. 2005, 44, 1742. (c) Jähnisch, K.; Baerns, M.; Hessel, V.;
Ehrfeld, W.; Haverkamp, V.; Löwe, H.; Wille, C.; Guber, A. J. Fluo-
rine Chem. 2000, 105, 117. (d) For flow microreactors with a
cyclone micromixer, see: (e) Hübner, S.; Bentrup, U.; Budde, U.;
Lovis, K.; Dietrich, T.; Freitag, A.; Küpper, L.; Jähnisch, K. Org.
Process Res. Dev. 2009, 13, 952. (f) Dietrich, T. R.; Freitag, A.;
Scholz, R. Chem. Eng. Technol. 2005, 28, 477. For flow microreac-
In methylcyclohexane, the hydrogen concentration un-
der the FB–slug-flow conditions was 2.7–3.2 times higher
than that under the conditions of the conventional flow
methods (Table 2). This higher level of hydrogen in the reac-
tion solution probably contributes to the improved reactivi-
ty. Moreover, the increased hydrogen concentration might
accelerate the desorption rate of partially hydrogenated
products from the catalyst, preventing over-reduction.
In conclusion, a novel FB–slug-flow method was devel-
oped,15 and its wide applicability was confirmed through
the hydrogenation of multiple bonds and by the synthesis
of ketones through partial hydrogenation of phenol deriva-
tives. Towards achieving green sustainable chemistry, the
FB–slug-flow method has potential for replacing conven-
tional gas-involved flow reactions because this environ-
mentally friendly process does not require the use of excess
gas.
tors with
a microfluidic ‘pipe’, see: (g) Chambers, R. D.;
Sandford, G.; Trmcic, J.; Okazoe, T. Org. Process Res. Dev. 2008,
12, 339. (h) Chambers, R. D.; Fox, M. A.; Sandford, G.; Trmcic, J.;
Goeta, A. J. Fluorine Chem. 2007, 128, 29. (i) Chambers, R. D.; Fox,
M. A.; Holling, D.; Nakano, T.; Okazoe, T.; Sandford, G. Lab Chip
2005, 5, 191. For flow microreactors with a microfluidic ‘bol-
lard’, see: (j) Wada, Y.; Schmidt, M. A.; Jensen, K. F. Ind. Eng.
Chem. Res. 2006, 45, 8036. For flow reactors with a tube-in-
tube, see: (k) O’Brien, M. J. CO2 Util. 2017, 21, 580.
(l) Brzozowski, M.; O’Brien, M.; Ley, S. V.; Polyzos, A. Acc. Chem.
Res. 2015, 48, 349. (m) O'Brien, M.; Taylor, N.; Polyzos, A.;
Baxendale, I. R.; Ley, S. V. Chem. Sci. 2011, 2, 1250. (n) O’Brien,
M.; Baxendale, I. R.; Ley, S. V. Org. Lett. 2010, 12, 1596.
(3) (a) Hone, C. A.; Kappe, C. O. Top. Curr. Chem. 2019, 377, 2; corri-
gendum: Top. Curr. Chem. 2019, 377, 7. (b) Mallia, C. J.;
Baxendale, I. R. Org. Process Res. Dev. 2016, 20, 327.
(4) Sobieszuk, P.; Aubin, J.; Pohorecki, R. Chem. Eng. Technol. 2012,
35, 1346.
Funding Information
(5) (a) Mase, N.; Mizumori, T.; Tatemoto, Y. Chem. Commun. 2011,
47, 2086. (b) Mase, N.; Isomura, S.; Toda, M.; Watanabe, N.
Synlett 2013, 24, 2225. (c) Mase, N.; Nishina, Y.; Isomura, S.;
Sato, K.; Narumi, T.; Watanabe, N. Synlett 2017, 28, 2184.
(6) For recent reviews on fine bubbles, see: (a) Ulatowski, K.;
Sobieszuk, P. Water Environ. J. 2020, in press; DOI:
10.1111/wej.12577. (b) Phan, K. K. T.; Truong, T.; Wang, Y.;
Bhandari, B. Trends Food Sci. Technol. 2020, 95, 118. (c) Atkinson,
A. J.; Apul, O. G.; Schnieder, O.; Garcia-Segura, S.; Westerhoff, P.
Acc. Chem. Res. 2019, 52, 1196. (d) Temesgen, T.; Bui, T. T.; Han,
M.; Kim, T.-i.; Park, H. Adv. Colloid Interface Sci. 2017, 246, 40.
(e) Alheshibri, M.; Qian, J.; Jehannin, M.; Craig, V. S. J. Langmuir
2016, 32, 11086.
(7) In the NTA method, many particles are individually and simul-
taneously analyzed, and their hydrodynamic diameters are cal-
culated based on the Stokes–Einstein equation, see: (a) Malloy,
A.; Carr, B. Part. Part. Syst. Charact. 2006, 23, 197. (b) Tian, X.;
Nejadnik, M. R.; Baunsgaard, D.; Henriksen, A.; Rischel, C.;
Jiskoot, W. J. Pharm. Sci. 2016, 105, 3366. (c) Filipe, V.; Hawe, A.;
Jiskoot, W. Pharm. Res. 2010, 27, 796.
This work was supported in part by JSPS KAKENHI Grant Numbers
JP15H03844 and JP18H02012, and MEXT KAKENHI Grant Number
JP18H04397.JapanSocietyforthePro
m
otio
n
o
f
S
cience(JP
1
5
H
0
3
8
4
4)Japa
n
S
ocietyforth
e
Pro
m
otio
n
o
f
Scie
n
ce(J
P
1
8
H
0
2
0
1
2)M
i
n
istry
o
f
E
d
u
catio
n
,C
u
l
utre, S
p
otrs, Sciencean
d
T
ech
n
olo
g
y
(JP
1
8
H
0
4
3
9
7)
Acknowledgment
We thank Kawaken Fine Chemicals Co., Ltd. and Nippon Kodoshi Cor-
poration for their generous gifts of 5 wt% Pd/C and Pd/sheet catalysts,
respectively. We thank Scitem Co., Ltd. for providing us with a radial-
flow column reactor. We acknowledge the members of Ushio Chemix
Corp. for discussion of the partial reduction of phenol. We would like
Supporting Information
Supporting information for this article is available online at
p
p
ortingInformatio
n
S
u
p
p
ortingI
n
formatio
n
(8) Ultrafine bubbles (UFBs) are defined as bubbles with diameters
of less than 1000 nm. Although the term nanobubbles (NBs) is
also used to describe bubbles that have diameters of less than
1000 nm, we use the term UFBs in this communication, based
on the appropriate standard: ; ISO 20480-1:2017: Fine Bubble
Technology: General Principles for Usage and Measurement of
Fine Bubbles: Part 1: Terminology; International Standards Orga-
nization: Geneva, 2017;
(9) Model: FBG-OS Type 1: liquid flowrate range: 0.01–99.99
mL/min; maximum gas-feed rate: 50% of liquid volume;
maximum discharge pressure: 5 MPa. Distributor: Process Max-
imize Technologies (PMT) Corporation (2-13-18 Akanedai Aoba-
ku, Yokohama 227-0066, Japan; Phone: +81-90-9104-3595; E-
mail: odajima@dh.catv.ne.jp).
References and Notes
(1) For recent reviews on flow chemistry, see: (a) Rogers, L.; Jensen,
K. F. Green Chem. 2019, 21, 3481. (b) Gérardy, R.; Emmanuel, N.;
Toupy, T.; Kassin, V.-E.; Tshibalonza, N. N.; Schmitz, M.;
Monbaliu, J.-C. M. Eur. J. Org. Chem. 2018, 2301. (c) Plutschack,
M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. Chem. Rev. 2017,
117, 11796. (d) Porta, R.; Benaglia, M.; Puglisi, A. Org. Process
Res. Dev. 2016, 20, 2. (e) Rossetti, I.; Compagnoni, M. Chem. Eng.
J. (Amsterdam, Neth.) 2016, 296, 56. (f) Gutmann, B.; Cantillo, D.;
Kappe, C. O. Angew. Chem. Int. Ed. 2015, 54, 6688.
(2) There are various recent approaches for flow gas–liquid reac-
tions: for flow microreactors with
a falling film, see:
(10) Suzuki, S.; Tadano, G.; Sato, K.; Narumi, T.; Mase, N.; Fine-Bubble
Mediated Hydrogenation Reaction of Heterocyclic Compounds,
Presented in part at the 100th Annual Meeting of the Chemical
Society of Japan, Chiba, Japan, March 2020; 2B8-09.
(a) Ziegenbalg, D.; Löb, P.; Al-Rawashdeh, M.; Kralisch, D.;
Hessel, V.; Schönfeld, F. Chem. Eng. Sci. 2010, 65, 3557.
(b) Zanfir, M.; Gavriilidis, A.; Wille, C.; Hessel, V. Ind. Eng. Chem.
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–F