Page 5 of 7
Journal of the American Chemical Society
Nicholas, K. M. Chemistry and synthetic utility of cobalt-complexed
propargyl cations. Acc. Chem. Res. 1987, 20, 207.
hydes to α,β-Unsaturated ketones. Chem. Lett. 2010, 39, 766. (g) Chen,
Q.-A.; Cruz, F. A.; Dong, V. M. Alkyne hydroacylation: switching regi-
oselectivity by tandem ruthenium catalysis. J. Am. Chem. Soc. 2015, 137,
3157. (h) Cruz, F. A.; Dong, V. M. Stereodivergent coupling of alde-
hydes and alkynes via synergistic catalysis using Rh and Jacobsen’s
amine. J. Am. Chem. Soc. 2017, 139, 1029.
1
2
3
4
5
6
7
8
(6) For select reviews, see: (a) Liu, G.; Wu, Y. Palladium-catalyzed
allylic C-H bond functionalization of olefins. Top. Curr. Chem. 2009,
292, 195. (b) Liu, C.; Zhang, H.; Shi, W.; Lei, A. Bond formations
between two nucleophiles: transition metal catalyzed oxidative cross-
coupling reactions. Chem. Rev. 2011, 111, 1780. (c) Yeung, C. S.; Dong,
V. M. Catalytic dehydrogenative cross-coupling: forming carbon-
carbon bonds by oxidizing two carbon-hydrogen bonds. Chem. Rev.
2011, 111, 1215. (d) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L.
Catalytic Carbene Insertion into C-H Bonds. Chem. Rev. 2010, 110,
704. For selected examples, see: (e) Jacques, L. P.; Gunther, S.; Car-
sten, B. Kharasch-Sosnovsky type allylic oxidations. Transition Metals
for Organic Synthesis (Eds: Beller, M. and Bolm, C.) 2004, 2, 256. (f)
Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C. Serial Ligand
Catalysis: A Highly Selective Allylic C-H Oxidation. J. Am. Chem. Soc.
2005, 127, 6970. (g) Cuthbertson, J. D.; MacMillan, D. W. C. The
direct arylation of allylic sp3 C–H bonds via organic and photoredox
catalysis. Nature, 2015, 519, 74.
(11) (a) Rosenblum, M. Organoiron Complexes as Potential Rea-
gents in Organic Synthesis. Acc. Chem. Res. 1974, 7, 122. (b) Cutler, A.;
Ehntholt, D.; Lennon, P.; Nicholas, K.; Marten, D. F.; Madhavarao, M.;
Raghu, S.; Rosan, A.; Rosenblum, M. Chemistry of Dicarbonyl η5-
Cyclopentadienyliron Complexes. General Syntheses of Monosubsti-
tuted η2-Olefin Complexes and of 1-Substituted η1-Allyl Complexes.
Conformational Effects on the Course of Deprotonation of (η2-Olefin)
Cations. J. Am. Chem. Soc. 1975, 97, 3149. (c) Jiang, S.; Agoston, G. E.;
Chen, T.; Cabal, M.-P.; Turos, E. BF3•Et2O-Promoted Allylation Reac-
tions of Allyl(cyclopropentadienyl)iron(II) Carbonyl Complexes with
Carbonyl Compounds. Organometallics 1995, 14, 4697. (d) Cutler, A.;
Ehntholt, D.; Giering, W. P.; Lennon, P.; Raghu, S.; Rosan, A.; Rosen-
blum, M. Tancrede, J.; Wells, D. Chemistry of Dicarbonyl η5-
Cyclopentadienyl-η1-Allyl- and -η2-Olefiniron Complexes. Preparation
and Cycloaddition Reactions. J. Am. Chem. Soc. 1976, 98, 3495. Previ-
ous work on alkyne complexes: (e) Reger, D. L.; Coleman, C. J.; McEl-
ligott, P. J. A new synthetic method for the preparation of [(η5-
C5H5)Fe(CO)(L)(un)]BF4 (L = CO, PPh3; un = unsaturated hydro-
carbon) complexes and reduction of the η2-acetylene complexes. J.
Organomet. Chem. 1979, 171, 73. (f) Akita, M.; Kakuta, S.; Sugimoto,
S.; Terada, M.; Tanaka, M.; Moro-oka, Y. Nucleophilic Addition to the
η2-Alkyne Ligand in [CpFe(CO)2(η2-R–C⋮C–R)]+. Dependence of the
Alkenyl Product Stereochemistry on the Basicity of the Nucleophile.
Organometallics 2001, 20, 2736. (g) Rosenblum, M.; Watkins, J. C.
Cyclopentannulation Reactions with Organoiron Reagents. Facile
Construction of Functionalized Hydroazulenes. J. Am. Chem. Soc. 1990,
112, 6316. (h) Redlich, M. D.; Mayer, M. F.; Hossain, M. M. Iron Lew-
is Acid [(η5-C5H5)Fe(CO)2(THF)]+ Catalyzed Organic Reactions,
Aldrichimica Acta, 2003, 36, 3. (i) Reger, D. L; McElligott, P. J. Versa-
tile Preparation of Highly Functionalized σ-Alkenyl Complexes of
Cyclopentadienyliron. A New Route to Substituted Alkenes. J. Am.
Chem. Soc. 1980, 102, 5924.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(7) (a) Cheng, D.; Bao, W. Propargylation of 1,3-Dicarbonyl Com-
pounds with 1,3-Diarylpropynes via Oxidative Cross-Coupling be-
tween sp3 C-H and sp3 C-H. J. Org. Chem. 2008, 73, 6881. (b) Wang,
T.; Zhou, W.; Yin, H.; Ma, J.-A.; Jiao, N. Iron-Facilitated Oxidative
Dehydrogenative C-O Bond Formation by Propargylic Csp3-H Func-
tionalization. Angew. Chem., Int. Ed. 2012, 51, 10823. (c) Grigg, R. D.;
Rigoli, J. W.; Pearce, S. D.; Schomaker, J. M. Synthesis of Propargylic
and Allenic Carbamates via the C-H Amination of Alkynes. Org. Lett.
2012, 14, 280. (d) Lu, H.; Li, C.; Jiang, H.; Lizardi, C. L.; Zhang, X. P.
Chemoselective Amination of Propargylic C(sp3)-H Bonds by Co-
balt(II)-Based Metalloradical Catalysis. Angew. Chem. Int. Ed. 2014, 53,
7028. (e) Alvarez, L. X.; Christ, M. L.; Sorokin, A. B. Selective Oxida-
tion of Alkenes and Alkynes Catalyzed by Copper Complexes. Appl.
Catal. A. 2007, 325, 303.
(8) (a) Fernandez-Salas, J. A.; Eberhart A. J.; Procter, D. Metal-Free
CH–CH-Type Cross-Coupling of Arenes and Alkynes Directed by a
Multifunctional Sulfoxide Group. J. Am. Chem. Soc. 2016, 138, 790; (b)
Hu, G.; Xu, J.; Li, P. Sulfur mediated propargylic C–H alkylation of
alkynes. Org. Chem. Front. 2018, 5, 2167.
(12) A conceptually similar gold-catalyzed reaction gives the cycliza-
tion product: (a) Li, T.; Zhang, L. Bifunctional Biphenyl-2-
ylphosphine Ligand Enables Tandem Gold-Catalyzed Propargylation
of Aldehyde and Unexpected Cycloisomerization. J. Am. Chem. Soc.
2018, 140, 17439. (b) Wang, Z.; Wang, Y.; Zhang, L. Soft Propargylic
Deprotonation: Designed Ligand Enables Au-Catalyzed Isomerization
of Alkynes to 1,3-Dienes. J. Am. Chem. Soc. 2014, 136, 8887.
(9) (a) Robinson, M. S.; Polak, M. L.; Bierbaum, V. M.; DePuy, C. H.;
Lineberger, W. C. Experimental Studies of Allene, Methylacetylene,
and the Propargyl Radical: Bond Dissociation Energies, Gas-Phase
Acidities, and Ion-Molecule Chemistry. J. Am. Chem. Soc. 1995, 117,
6766. (b) Avocetien, K.; Li, Y.; O’Doherty, G. A. The Alkyne Zipper
Reaction in Asymmetric Synthesis. In Modern Alkyne Chemistry: Cata-
lytic and Atom-Economic Transformations; Trost, B. M.; Li, C.-J., Eds.
Wiley: Weinheim, 2015; p. 368.
(13) Application in total synthesis: (a) Marshall, J. A.; Ellis, K. C. To-
tal Synthesis of (-)- and (+)-Membrenone C. Org. Lett, 2003, 5, 1729.
(b) Trost, B. M.; Dong, G. Total synthesis of bryostatin 16 using atom-
economical and chemoselective approaches. Nature, 2008, 456, 485. (c)
Dalby, S. M.; Goodwin-Tindall, J.; Paterson, I. Total synthesis of (-)-
Rhizopodin. Angew. Chem. Int. Ed. 2013, 52, 6517.
(10) For select reviews, see: (a) Willis, M. C. Transition metal cata-
lyzed alkene and alkyne hydroacylation. Chem. Rev. 2010, 110, 725. (b)
Leung, J. C.; Krische, M. J. Catalytic intermolecular hydroacylation of
C-C π-bonds in the absence of chelation assistance. Chem. Sci. 2012, 3,
2202. For select examples, see (c) Miller, K. M.; Huang, W.-S.; Jamison,
T. F. Catalytic asymmetric reductive coupling of alkynes and aldehydes:
enantioselective synthesis of allylic alcohols and r-hydroxy ketones. J.
Am. Chem. Soc. 2003, 125, 3442. (d) Mahandru, G. M.; Liu, G.; Mont-
gomery, J. Ligand-dependent scope and divergent mechanistic behav-
ior in nickel-catalyzed reductive couplings of aldehydes and alkynes. J.
Am. Chem. Soc. 2004, 126, 3698. (e) Yang, Y.; Zhu, S.-F.; Zhou, C.-Y.;
Zhou, Q.-L. Nickel-catalyzed enantioselective alkylative coupling of
alkynes and aldehydes: synthesis of chiral allylic alcohols with tetrasub-
stituted olefins. J. Am. Chem. Soc. 2008, 130, 14052. (f) Miura, K.;
Yamamoto, K.; Yamanobe, A.; Ito, K.; Kinoshita, H.; Ichikawa, J.; Ho-
somi, A. Indium (III)-catalyzed coupling between alkynes and alde-
(14) For selected reviews, see: (a) Ding, C.-H.; Hou, X.-L. Catalytic
asymmetric propargylation. Chem. Rev. 2011, 111, 1914. (b) Ambler, B.
R.; Woo, S. K.; Krische, M. J. Catalytic Enantioselective Carbonyl Pro-
pargylation Beyond Preformed Carbanions: Reductive Coupling and
Hydrogen Auto-Transfer. ChemCatChem, 2018, 11, 324. For selected
examples, see: (c) Patman, R. L.; Williams, V. M.; Bower, J. F.; Krische,
M. J. Carbonyl propargylation from the alcohol or aldehyde oxidation
level employing 1,3-enynes as surrogates to preformed allenylametal
regents: a ruthenium-catalyzed C−C bond-forming transfer hydro-
genation. Angew. Chem., Int. Ed. 2008, 47, 5220. (d) Meng, F.;
Haeffner, F.; Hoveyda, A. H. Diastereo- and enantioselective reactions
ACS Paragon Plus Environment