Inorganic Chemistry
Article
(
4
d) Umena, Y.; Kawakami, K.; Shen, J.-R.; Kamiya, R. N. Nature 2011,
Scheme 2. Proposed Mechanism for Photocatalytic
Oxygenation of Sulfides
73, 55−60.
(3) (a) Fukuzumi, S.; Kishi, T.; Kotani, H.; Lee, Y.-M.; Nam, W. Nat.
Chem. 2011, 3, 38−41. (b) Concepcion, J. J.; Jurss, J. W.; Brennaman,
M. K.; Hoertz, P. G.; Patrocinio, A. O. T.; Murakami Iha, N. Y.;
Templeton, J. L.; Meyer, T. J. Acc. Chem. Res. 2009, 42, 1954−1965.
(c) Zeitler, K. Angew. Chem., Int. Ed. 2009, 48, 9785−9789.
(d) Ashford, D. L.; Stewart, D. J.; Glasson, C. R.; Binstead, R. A.;
Harrison, D. P.; Norris, M. R.; Concepcion, J. J.; Fang, Z.; Templeton,
J. L.; Meyer, T. J. Inorg. Chem. 2012, 51, 6428−6430.
(4) (a) Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Chem.
Rev. 1996, 96, 2841−2888. (b) Meunier, B.; de Visser, S. P.; Shaik, S.
Chem. Rev. 2004, 104, 3947−3980. (c) Gunay, A.; Theopold, K. H.
Chem. Rev. 2010, 110, 1060−1081. (d) Meyer, T. J.; Huynh, M. H. V.
Inorg. Chem. 2003, 42, 8140−8160. (e) Moonshiram, D.; Alperovich,
I.; Concepcion, J. J.; Meyer, T. J.; Pushkar, Y. Proc. Natl. Acad. Sci.
U.S.A. 2013, 110, 3765−3770. (f) Hirai, Y.; Kojima, T.; Mizutani, Y.;
Shiota, Y.; Yoshizawa, K.; Fukuzumi, S. Angew. Chem., Int. Ed. 2008,
4
7, 5772−5776. (g) Kojima, T.; Nakayama, K.; Ikemura, K.; Ogura, T.;
Fukuzumi, S. J. Am. Chem. Soc. 2011, 133, 11692−11700.
5) (a) Low, D. W.; Winkler, J. R.; Gray, H. B. J. Am. Chem. Soc.
996, 118, 117−120. (b) Berglund, J.; Pascher, T.; Winkler, J. R.;
Gray, H. B. J. Am. Chem. Soc. 1997, 119, 2464−2469.
6) (a) Duan, L.; Xu, Y.; Zhang, P.; Wang, M.; Sun, L. Inorg. Chem.
(
1
(
electron acceptor Co(III). An isotopic labeling experiment
showed that water is the source of oxygen in the organic
substrates following photooxidation. These results have
important consequences for the photocatalytic oxidation of
substrates by related dyad catalysts and add a new dimension to
the understanding of PCET mechanisms.
2010, 49, 209−215. (b) Kotani, H.; Suenobu, T.; Lee, Y.-M.; Nam,
W.; Fukuzumi, S. J. Am. Chem. Soc. 2011, 133, 3249−3251. (c) Kalita,
D.; Radaram, B.; Brooks, B.; Kannam, P. P.; Zhao, X. ChemCatChem
2
011, 3, 571−573. (d) Li, F.; Yu, M.; Jiang, Y.; Huang, F.; Li, Y.;
Zhang, B.; Sun, L. Chem. Commun. 2011, 47, 8949−8951.
e) Fukuzumi, S.; Mizuno, T.; Ojiri, T. Chem.Eur. J. 2012, 18,
5794−15804. (f) Li, T. T.; Chen, Y.; Li, F. M.; Zhao, W. L.; Wang, C.
J.; Lv, X. J.; Xu, Q. Q.; Fu, W. F. Chem.Eur. J. 2014, 20, 8054−8061.
g) Ohzu, S.; Ishizuka, T.; Hirai, Y.; Fukuzumi, S.; Kojima, T. Chem.
Eur. J. 2013, 19, 1563−1567.
(
1
ASSOCIATED CONTENT
Supporting Information
■
(
*
S
X-ray crystallographic data for ligand L in CIF format, NMR
spectra of the compounds, electronic absorption and HR-ESI
mass spectra of the complexes, results of electrochemical
(
7) (a) Carreno, M. C. Chem. Rev. 1995, 95, 1717−1760.
(
(
b) Fernandez, I.; Khair, N. Chem. Rev. 2003, 103, 3651−3706.
c) Ciclosi, M.; Dinoi, C.; Gonsalvi, L.; Peruzzini, M.; Manoury, E.;
Poli, R. Organometallics 2008, 27, 2281−2286.
(8) (a) Barker, J. E.; Ren, T. Tetrahedron Lett. 2004, 45, 4681−4683.
(
b) Barker, J. E.; Ren, T. Inorg. Chem. 2008, 47, 2264−2266. (c) Bolm,
AUTHOR INFORMATION
C.; Bienewald, F. Angew. Chem., Int. Ed. 1996, 34, 2640−2642.
(d) Kaczorowska, K.; Kolarska, Z.; Mitka, K.; Kowalski, P. Tetrahedron
■
2
005, 61, 8315−8327. (e) Pitchen, P.; Dunach, E.; Deshmukh, M. N.
J. Am. Chem. Soc. 1984, 106, 8188−8193.
9) Hamelin, O.; Guillo, P.; Loiseau, F.; Boissonnet, M.-F.; Men
S. Inorg. Chem. 2011, 50, 7952−7954.
10) (a) Huynh, M. H. V.; Dattelbaum, D. M.; Meyer, T. J. Coord.
*
Notes
(
́
age,
The authors declare no competing financial interest.
(
ACKNOWLEDGMENTS
■
Chem. Rev. 2005, 249, 457−483. (b) Li, F.; Jiang, Y.; Zhang, B.;
Huang, F.; Gao, Y.; Sun, L. Angew. Chem., Int. Ed. 2012, 51, 2417−
2420. (c) Norris, M. R.; Concepcion, J. J.; Harrison, D. P.; Binstead, R.
A.; Ashford, D. L.; Fang, Z.; Meyer, T. J. J. Am. Chem. Soc. 2013, 135,
2080−2083. (d) Kaveevivitchai, N.; Chitta, R.; Zong, R.; El Ojaimi,
M.; Thummel, R. P. J. Am. Chem. Soc. 2012, 134, 10721−10724.
This work was supported by the National Key Basic Research
Program of China (973 Program 2013CB834804) and by the
Ministry of Science and Technology of China (Grant
2
012DFH40090). We thank the National Natural Science
Foundation of China (NSFC Grants 21267025, 21273257,
21367026, and U1137606) for financial support.
(e) Farras
̀
, P.; Maji, S.; Benet-Buchholz, J.; Llobet, A. Chem.Eur. J.
2
012, 19, 7162−7172.
REFERENCES
(11) (a) Chao, D.; Fu, W. F. Chem. Commun. 2013, 49, 3872−3874.
■
(
b) Chao, D.; Fu, W. F. Dalton Trans. 2014, 43, 306−310. (c) Bian, Z.
(
2
1) (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev.
Y.; Chi, S. M.; Li, L.; Fu, W. Dalton Trans. 2010, 39, 7884−7887.
d) Schulz, M.; Karnahl, M.; Schwalbe, M.; Vos, J. G. Coord. Chem.
011, 40, 102−113. (b) Inagaki, A.; Akita, M. Coord. Chem. Rev. 2010,
(
2
54, 1220−1239. (c) Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A.
Rev. 2012, 256, 1682−1705. (e) Gholamkhass, B.; Mametsuka, H.;
Koike, K.; Tanabe, T.; Furue, M.; Ishitani, O. Inorg. Chem. 2005, 44,
2326−2336. (f) Bindra, G. Dalton Trans. 2011, 40, 10812−10814.
(12) Concepcion, J. J.; Jurss, J. W.; Templeton, J. L.; Meyer, T. J. J.
Am. Chem. Soc. 2008, 130, 16462−16463.
(13) Chen, Z. F.; Chen, C. C.; Weinberg, D. R.; Kang, P.;
Concepcion, J. J.; Harrison, D. P.; Brookhart, M. S.; Meyer, T. J. Chem.
Commun. 2011, 47, 12607−12609.
̈
Chem. Rev. 2007, 107, 2725−2756. (d) Sun, L.; Hammarstrom, L.;
Akermark, B.; Styring, S. Chem. Soc. Rev. 2001, 30, 36−49. (e) Lewis,
N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 15729−
1
(
5735. (f) Wasielewski, M. R. Acc. Chem. Res. 2009, 42, 1910−1921.
2) (a) Renger, G. Photosynth. Res. 2007, 92, 407−425. (b) Ferreira,
K. N.; Iverson, T. M.; Maghlaoui, K.; Barber, J.; Iwata, S. Science 2004,
03, 1831−1838. (c) Zouni, A.; Witt, H. T.; Kern, J.; Fromme, P.;
Kraus, N.; Saenger, W.; Orth, P. Nature 2001, 409, 739−742.
3
H
dx.doi.org/10.1021/ic5020972 | Inorg. Chem. XXXX, XXX, XXX−XXX