Table 5. Further Substrate Scope.a
OMe
I
N
N
Me
Me
Cl
X
O
O
A
NaH
H
+
r.t., DMF
O
OMe
X
O
8-10
1
6a
OMe
OMe
OMe
O
O
O
N
O
N
O
S
O
Bn
Me
10
8
9
79%, 5 h
71%, 7.5 h
66%, 5 h
aReaction conditions: 1 (1 mmol), 6a (1.15 mmol), A (10 mol%), NaH (1.6 mmol), and DMF (10 mL) at r.t.
In conclusion, a straightforward organocatalytic synthesis of 4-aroylcoumarins has been developed. A structurally related
thiocoumarin and quinolinone derivatives bearing aroyl groups at their 4-positions are also accessible using this method. NHCs
generated from imidazolium salts are the most effective in this transformation compared to those formed from triazolium or
benzthiazolium salts, while the thiazolium-salt-based NHC failed to catalyze this reaction. To the best of our knowledge, these reactions
represent the first examples of nucleophilic substitutions at the β-carbons of enones to furnish the corresponding aroyl-substituted
systems. The method facilitates rapid access to this type of -ketoenone.
Acknowledgments
This work was supported by a Grant-in-Aid for Scientific Research on Innovative Areas “Advanced Molecular Transformations by
Organocatalysts” from The Ministry of Education, Culture, Sports, Science and Technology, Japan.
References and notes
1.
(a) Enders D, Balensiefer T. Acc, Chem. Res. 2004; 37: 534-541; (b) N-Heterocyclic Carbenes in Synthesis; Nolan, S. P., Ed.; WILEY-VCH GmbH &
KGaA: Weinheim, 2006;
2.
3.
4.
5.
6.
7.
8.
9.
(c) Marion N, Die-Gonzale S, Nolan SP. Angew. Chem., Int. Ed. 2007; 46: 2988-3000;
(d) Enders D, Niemeier O, Henseler, A. Chem. Rev. 2007; 107: 5606-5655;
(e) Hopkinson MN. Richter C. Schedler M, Glorius F. Nature. 2014; 510: 485-496;
(f) Flanigan DM, Michailidis FR, White NA, Rovis T. Chem. Rev. 2015; 115: 9307-9387.
(a) Ukai T, Tanaka S, Dokawa S. J. Pharm. Soc. Jpn. 1943; 63: 269–300;
(b) Breslow R. J. Am. Chem. Soc. 1958; 80: 3719-3726.
(a) Stetter H. Angew. Chem. Int. Ed. 1976; 15: 639-647.
(b) Stetter H, Kuhlmann H. Org. React. 1991; 40: 407-496.
10. Higashino T, Takemoto M, Miyashita A, Hayashi E. Chem. Pharm. Bull. 1985; 33: 1395-1399.
11. (a) Miyashita A, Suzuki Y, Iwamoto K, Oishi E, Higashino T. Chem. Pharm. Bull. 1990; 38: 1147-1152.
12. (b) Miyashita A, Suzuki Y, Iwamoto K, Oishi E, Higashino T. Heterocycles, 1998; 49: 405-413.
13. (a) Miyashita A, Matsuda H, Higasmno T. Chem. Pharm. Bull. 1992; 40: 2627-2631.
14. (b) Suzuki Y, A. Bakar Md. Tanoi T, Nomura N, Sato M. Tetrahedron 2011; 67: 4710-4715.
15. (a) Suzuki Y, Toyota T, Imada F, Sato M, Miyashita A. Chem. Commun. 2003; 1314-1315.
16. (b)Suzuki Y, Toyota T, Miyashita A, Sato M. Chem. Pharm. Bull. 2006; 54: 1653-1658.
17. (a) Grasa GA, Kissling RM, Nolan SP. Org. Lett. 2002; 4: 3583-3586.
18. (b) Nyce GW, Lamboy JA, Connor EF, Waymouth RM, Hedrick JL. Org. Lett. 2002; 4: 3587-3590.
19. (c) Connor EF, Nyce GW, Myers M, Möck A, Hedrick JL. J. Am. Chem. Soc. 2002; 124: 914-915.
20. (a) Chow KYK, Bode JW. J. Am. Chem. Soc. 2004, 126, 8126-8127.
21. (b) Reynolds NT, de Alaniz JR, Rovis T. J. Am. Chem. Soc. 2004; 126: 9518-9519.
22. (c) De Sarkar S, Grimme S, Studer A. J. Am. Chem. Soc. 2010; 132: 1190-1191.
23. (a) Sohn SS, Rosen EL, Bode JW. J. Am. Chem. Soc. 2004; 126: 14370-14371.
24. (b) Burstein C, Glorius F. Angew. Chem. Int. Ed. 2004; 43: 6205-6208.
25. (c) He M, Bode JW. Org. Lett. 2005; 7: 3131-3134.
26. (d) Chan A, Scheidt KA. J. Am. Chem. Soc. 2008; 130: 2740-2741.
27. (a) He M, Struble JR, Bode JW. J. Am. Chem. Soc. 2006; 128: 8418-8420.
28. (b) He M, Uc GJ, Bode JW. J. Am Chem, Soc. 2006; 128: 15088-15089.
29. (a) Dayam R, Gundla R, Al-Mawsawi LQ, Neamati N. Med. Res. Rev. 2008; 28: 118-154.
30. (b) Ong EBB, Watanabe N, Saito A, Futamura Y, Abd El Galil KH, Koito A, Najimudin N, Osada H. J. Biol. Chem. 2011; 286: 14049-14056.
31. (a) Emami S, Dadashpour S. Eur. J. Med. Chem. 2015; 102: 611-630.
32. (b) Huang XY, Shan ZJ, Zhai HL, Su L, Zhang XY. Chem. Biol. Drug Des. 2011; 78: 651-658.
33. Cravotto G, Nano GM, Palmisano G, Tagliapietra S. Tetrahedron: Asymmetry 2001; 12: 707-709.
34. (a) Nakamura T, Kodama N, Oda M, Tsuchiya S, Arai Y, Kumamoto T, Ishikawa T, Ueno K, Yano S. J. Nat. Med. 2009; 63:15-20.
35. (b) Gosselin F, Britton RA, Davies IW, Dolman SJ, Gauvreau D, Hoerrner RS, Hughes G, Janey J, Lau S, Molinaro C, Nadeau C, O’Shea PD, Palucki
M, Sidler R. J. Org. Chem. 2010; 75: 4154-4160.
36. (a) Muscia GC, Bollini M, Bruno AM, Asis SE. J. Chil. Chem. Soc. 2006; 51: 859-863.
37. (b) Vukanovic J, Passaniti A, Hirata T, Traystman RJ, Hartley-Asp B, Isaacs JT. Cancer Res. 1993; 53: 1833-1837.
38. a) Ukrainets IV, Taran SG, Kodolova OL, Gorokhova OV, Kravchenko VN. Chem. Heterocycl. Compd. 1997; 33: 959-963.
39. (b) Ukrainets IV, Taran SG, Gorokhova OV, Marusenko NA, Turov AV. Chem. Heterocycl. Compd. 1997; 33: 600-604.