ORGANIC
LETTERS
2007
Vol. 9, No. 1
49-52
First Chiral Phosphoroamidite-phosphite
Ligands for Highly Enantioselective and
Versatile Pd-Catalyzed Asymmetric
Allylic Substitution Reactions
Eva Raluy, Carmen Claver, Oscar Pa`mies,* and Montserrat Die´guez*
Departament de Qu´ımica F´ısica i Inorga`nica, UniVersitat RoVira i Virgili, C/ Marcel‚li
Domingo, s/n 43007 Tarragona, Spain
montserrat.dieguez@urV.cat; oscar.pamies@urV.cat
Received October 6, 2006
ABSTRACT
A series of phosphite-phosphoroamidite ligands, derived from readily available D-xylose, has been successfully applied for the first time in the
Pd-catalyzed allylic substitution of several substrates with different steric and electronic properties, with high enantioselectivities (ee’s up to
98) and activities in standard conditions.
One of the main goals of modern synthetic organic chemistry
is the catalytic enantioselective formation of C-C and
C-heteroatom bonds.1 In this respect, the asymmetric Pd-
catalyzed allylic substitution reaction is a powerful and highly
versatile procedure because it tolerates several functional
groups.1 A large number of chiral ligands, mainly P- and
N-containing ligands, which have either C2- or C1-symmetry,
have provided high enantiomeric excesses.1,2 However, one
disadvantage of using these ligands is that they are often
synthesized either from expensive chiral sources or in tedious
synthetic steps. Another common disadvantage for the most
successful ligand families developed for this process is that
they usually show low reaction rates and a high substrate
specificity (i.e., high ee’s are obtained in disubstituted linear
hindered substrates and low ee’s are obtained in cyclic and
unhindered linear substrates, or vice versa; Figure 1).1 These
limitations hamper their potential use in industrial scale.
Research into more versatile and efficient ligand systems
based on simple starting materials in this reaction is therefore
of great importance nowadays. For this purpose, carbohy-
drates are particularly advantageous thanks to their low price
and easy modular constructions.3 Although they have been
(2) See for example: (a) Pre´toˆt, R.; Pfaltz, A. Angew. Chem., Int. Ed.
1998, 37, 323. (b) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33,
336. (c) Evans, D. A.; Campos, J. R.; Tedrow, J. R.; Michael, F. E.; Gagne,
M. R. J. Am. Chem. Soc. 2000, 122, 7905. (d) Trost, B. M.; Oslob, J. D. J.
Am. Chem. Soc. 1999, 121, 3057. (e) Trost, B. M.; Bunt, R. C. J. Am.
Chem. Soc. 1994, 116, 4089. (f) Trost, B. M.; Krueger, A. C.; Bunt, R. C.;
Zambrano, J. J. Am. Chem. Soc. 1996, 118, 6520. (g) Pa`mies, O.; Die´guez,
M.; Claver, C. J. Am. Chem. Soc. 2005, 127, 3646. (h) Dierkes, P.;
Randechul, S.; Barloy, L.; De Cian, A.; Fischer, J.; Kamer, P. C. J.; van
Leeuwen, P. W. N. M.; Osborn, J. A. Angew. Chem. Int. Ed. 1998, 37,
3116. (i) You, S.-L.; Zhu, X.-Z.; Luo, Y.-M.; Hou, X.-L.; Dai, L.-X. J.
Am. Chem. Soc. 2001, 123, 7471. (j) Wiese, B.; Helmchen, G. Tetrahedron
Let. 1998, 39, 5727.
(1) For reviews, see for example: (a) Tsuji, J. Palladium Reagents and
Catalysis, InnoVations in Organic Synthesis; Wiley: New York, 1995. (b)
Trost, B. M.; van Vranken, D. L. Chem. ReV. 1996, 96, 395. (c) Johannsen,
M.; Jorgensen, K. A. Chem. ReV. 1998, 98, 1869. (d) Pfaltz, A.; Lautens,
M. In ComprehensiVe Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A.,
Yamamoto, H., Eds.; Springer-Verlag: Berlin, 1999; Vol. 2, Chapter 24.
(e) Trost, B. M.; Crawley, M. L. Chem. ReV. 2003, 103, 2921.
(3) (a) Die´guez, M.; Pa`mies, O.; Claver, C. Chem. ReV. 2004, 104, 3189.
(b) Die´guez, M.; Pa`mies, O.; Ruiz, A.; D´ıaz, Y.; Castillo´n, S.; Claver, C.
Coord. Chem. ReV. 2004, 248, 2165. (c) Die´guez, M.; Ruiz, A.; Claver, C.
Dalton Trans. 2003, 2957.
10.1021/ol0624631 CCC: $37.00
© 2007 American Chemical Society
Published on Web 12/13/2006