Organometallics
ARTICLE
then warmed to room temperature and stirred for 12 h. After filtration, part
of the filtrate (ca. 2 mL) was quenched with a 1.0 M aqueous HCl solution
(0.5 mL). The organic phase was separated and analyzed by GC-MS using
hexamethylbenzene as an internal standard, which indicated the quantitative
formation of 4,40-dimethylbiphenyl. The other portion of the filtrate (ca.
3 mL) was concentrated, and a small portion of toluene (0.5 mL) was added.
Slow evaporation of THF afforded a bluish-green crystalline solid, which
shows identical 1H NMR spectrum to that of [Co(IEt)4]+ in 1.
and the National Natural Science Foundation of China (Nos.
21002114 and 20872168).
’ REFERENCES
(1) Cahiez, G.; Moyeux, A. Chem. Rev. 2010, 110, 1435–1462.
(2) Kharasch, M. S.; Fields, E. K. J. Am. Chem. Soc. 1941, 63, 2316–
2320.
General Procedure for Cobalt-NHC Complex-Catalyzed
HomocouplingofGrignard Reagents. Toafrozen solutionof[Co-
(IEt)4][BPh4] (9.9 mg, 0.01 mmol) in THF (10mL) was added Grignard
reagent27 (1.0 mmol) and 2-methyl-1,2-dichloropropane (58 μL,
0.5 mmol) at ꢀ116 ꢀC. The mixture was then warmed to room tem-
perature or heated to 50 ꢀC (Table 2) and stirred for 6 h. After quenching
with a 1.0 M aqueous HCl solution (5 mL), themixture was extracted with
Et2O (5 mL ꢁ 3), and the combined organic portions were dried over
anhydrous Na2SO4. After removal of the solvent, the resulting residue was
subjected to column chromatographic separation (SiO2, 300ꢀ400 mesh)
to give the following biaryls as colorless solids. All the isolated yields are
given with respectto the Grignard reagents. The 1H NMR spectra ofthese
biaryls are consistent with those reported in the literature.27
(3) (a) Yorimitsu, H.; Oshima, K. Pure Appl. Chem. 2006, 78, 441–449.
(b) Gosmini, C.; Bꢀegouin, J.-M.; Moncomble, A. Chem. Commun.
2008, 3221–3233. (c) Hess, W.; Treutwein, J.; Hilt, G. Synthesis 2008,
3537–3562. (d) Ilies, L.; Chen, Q.; Zhen, X.; Nakamura, E. J. Am. Chem. Soc.
2011, 133, 5221–5223. (e) Korn, T. J.; Knochel, P. Angew. Chem., Int. Ed.
2005, 44, 2947–2951. (f) Moncomble, A.; Floch, P. L.; Gosmini, C.
Chem.—Eur. J. 2009, 15, 4770–4774.
(4) For examples, see: (a) Hatakeyama, T.; Hashimoto, S.; Ishizuka,
K.; Nakamura, M. J. Am. Chem. Soc. 2009, 131, 11949–11963. (b) Geny,
A.; Gaudrel, S.; Slowinski, F.; Amatore, M.; Chouraqui, G.; Malacria, M.;
Aubert, C.; Gandon, V. Adv. Synth. Catal. 2009, 351, 271–275. (c)
Kobayashi, T.; Ohmiya, H.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc.
2008, 130, 11276–11277. (d) Hamaguchi, H.; Uemura, M.; Yasui, H.;
Yorimitsu, H.; Oshima, K. Chem. Lett. 2008, 10, 1178–1179. (e)
Someya, H.; Ohmiya, H.; Yorimitsu, H.; Oshima, K. Tetrahedron
2007, 63, 8609–8618. (f) Someya, H.; Ohmiya, H.; Yorimitsu, H.;
Oshima, K. Org. Lett. 2007, 9, 1565–1567. (g) Saino, N.; Kogure, D.;
Okamoto, S. Org. Lett. 2005, 7, 3065–3067. (h) Díez-Gonzꢀalez, S.;
Marion, N.; Nolan, S. P. Chem. Rev. 2009, 109, 3612–3676.
(5) Xiang, L.; Xiao, J.; Deng, L. Organometallics 2011, 30, 2018–2025.
(6) For examples, see: (a) Lappert, M. F.; Pye, P. L. J. Chem. Soc.,
Dalton Trans. 1977, 2172–2180. (b) Coleman, A. W.; Hitchcock, P. B.;
Lappert, M. F.; Maskell, R. K.; M€uller, J. H. J. Organomet. Chem. 1983,
250, C9–C14. (c) Plaia, U.; Stolzenberg, H.; Fehlhammer, W. P. J. Am.
Chem. Soc. 1985, 107, 2171–2172. (d) Gibson, S. E.; Johnstone, C.; Loch,
J. A.; Steed, J. W.; Stevenazzi, A. Organometallics 2003, 22, 5374–5377.
(e) Danopoulos, A. A.; Wright, J. A.; Motherwell, W. B.; Ellwood, S.
Organometallics 2004, 23, 4807–4810. (f) Hu, X.; Castro-Rodriguez, I.;
Meyer, K. J. Am. Chem. Soc. 2004, 126, 13464–13473. (g) Cowley, R. E.;
Bontchev, R. P.; Sorrell, J.; Sarracino, O.; Feng, Y.; Wang, H.; Smith, J. M.
J. Am. Chem. Soc. 2007, 129, 2424–2425. (h) van Rensburg, H.; Tooze,
R. P.; Foster, D. F.; Otto, S. Inorg. Chem. 2007, 46, 1963–1965. (i) Xi, Z.;
Liu, B.; Lu, C.; Chen, W. Dalton Trans. 2009, 7008–7014. (j) Park, S. R.;
Findlay, N. J.; Garnier, J.; Zhou, S.; Spicer, M. D.; Murphy, J. A.
Tetrahedron 2009, 65, 10756–10761. (k) Vꢀelez, C. L.; Markwick,
P. R. L.; Holland, R. L.; DiPasquale, A. G.; Rheingold, A. L.; O’Connor,
J. M. Organometallics 2010, 29, 6695–6702.
Biphenyl. Yield: 86%. Colorless solid. 1H NMR (300 MHz, CDCl3):
δ 7.61 (d, J = 7.5 Hz, 4H, o-C6H5), 7.44 (t, J = 7.2 Hz, 4H, m-C6H5), 7.34
(t, J = 7.2 Hz, 2H, p-C6H5).
1
4,40-Dimethlbiphenyl. Yield: 83%. Colorless solid. H NMR (300
MHz, CDCl3): δ 7.47 (d, J = 7.5 Hz, 4H, C6H4), 7.23 (d, J = 7.5 Hz, 4H,
C6H4), 2.38 (s, 6H, CH3).
2,20-Dimethlbiphenyl. Yield: 81%. Colorless solid. 1H NMR (300 MHz,
CDCl3): δ 7.18 (m, 6H, C6H4), 7.03 (m, 4H, C6H4), 1.98 (s, 6H, CH3).
2,20-4,40-6,60-Hexamethlbiphenyl. Yield: 75%. Colorless solid. 1H
NMR (300 MHz, CDCl3): δ 6.85 (s, 4H, C6H2), 2.25 (s, 6H, p-CH3),
1.78 (s, 12H, m-CH3).
1
4,40-Dichlorobiphenyl. Yield: 74%. Colorless solid. H NMR (300
MHz, CDCl3): δ 7.39ꢀ7.49 (m, 8H, C6H4).
2,20-Dimethoxybiphenyl. Yield: 74%. Colorless solid. 1H NMR (300
MHz, CDCl3): δ 7.26 (t, J = 7.8 Hz, 2H, C6H4), 7.17 (d, J = 7.2 Hz, 2H,
C6H4), 6.93 (m, 4H, C6H4), 3.70 (s, 6H, OCH3).
4,40-Dimethoxybiphenyl. Yield: 84%. Colorless solid. 1H NMR (300
MHz, CDCl3): δ 7.41 (d, J = 8.7 Hz, 4H, C6H4), 6.89 (d, J = 8.7 Hz, 4H,
C6H4), 3.77 (s, 6H, OCH3).
Calculation Details. To haveabetterunderstandingofthestructure
ofthe Cocomplexes, density functionaltheory (DFT)28 studies have been
performed with the Gaussian0929 program using the BS-B3LYP30 meth-
od. The 6-311+G** basis set was used for the C, H, and N atoms, and the
cc-PVTZ basis set was used for the Co atom. The structures of [Co-
(IEt)4]+ and [Co(IEt)4]2+ with D4 symmetry were fully optimized.
Calculations were performed assuming a singlet electronic ground state
for [Co(IEt)4]+ and a doublet state for [Co(IEt)4]2+.
(7) For rare examples of homoleptic square-planar cobalt
complexes, see: (a) Vaska, L.; Chen, L. S.; Miller, W. V. J. Am. Chem. Soc.
1971, 93, 6671–6673. (b) Miskowski, V. M.; Robbins, J. L.; Hammond,
G. S.; Gray, H. B. J. Am. Chem. Soc. 1976, 98, 2477–2483. (c) Margulieux,
G. W.; Weidemann, N.; Lacy, D. C.; Moore, C. E.; Rheingold, A. L.;
Figueroa, J. S. J. Am. Chem. Soc. 2010, 132, 5033–5035. (d) Carter, S. J.;
Foxman, B. M.; Stuhl, L. S. J. Am. Chem. Soc. 1984, 106, 4265–4266.
(8) Aresta, M.; Rossi, M.; Sacco, A. Inorg. Chim. Acta 1969,
3, 227–231.
’ ASSOCIATED CONTENT
S
Supporting Information. X-ray crystallographic files in
b
(9) Kuhn, N.; Kratz, T. Synthesis 1993, 561–562.
CIF format, cyclic voltammogram of the cobalt complexes, and
computational details. This material is available free of charge via
(10) AnaloguesCo(I)-NHCcomplexes[Co(NHC)4][BPh4] employ-
ing other N-heterocyclic carbenes (NHC = 1,3-dimethyl-4,5-dimethylimi-
dazole-2-ylidene (IMe), and 1,3-diisopropyl-4,5-dimethylimidazole-2-
ylidene (IPr)) have also been prepared and structurally characterized.
For detailed information, see Experimental Section.
’ AUTHOR INFORMATION
(11) (a) Mason, W. R.; Gray, H. B. J. Am. Chem. Soc. 1968,
90, 5721–5729. (b) Gray, H. B.; Pree, J. R. J. Am. Chem. Soc. 1970, 92,
7306–7312.
Corresponding Author
*E-mail: deng@sioc.ac.cn.
(12) (a) Turner, W. R.; Elving, P. J. Anal. Chem. 1965, 37, 207–211.
(b) Dupont, T. J.; Mills, J. L. J. Am. Chem. Soc. 1975, 97, 6375–6382.
(13) Zhou, D.-L.; Gao, J.; Rusling, J. F. J. Am. Chem. Soc. 1995, 117,
1127–1134.
’ ACKNOWLEDGMENT
This research was financially supported by the National Basic
Research Program of China (973 Program, No. 2011CB808705)
4693
dx.doi.org/10.1021/om200527y |Organometallics 2011, 30, 4687–4694