M. E. Crestoni
993±999
irradiation at 1208C in a 220 Gammacell (Nuclear Canada) to a total dose
of 104 Gy, at a dose rate of 104 Gyh 1. A solution of the radiolytic products
in cyclohexane was recovered after repeated freeze ± thaw cycles and
analyzed by GLC-MS using a Hewlett Packard 5890A gas chromatograph
equipped with a Model 5970B mass-selective detector or by a GC-AED
System (HP 5890 gas chromatograph, in line with an AED HP 5921A
detector under the control of a HP 5895A chemstation). The following
columns were used: a) a 100-m, 0.32-mm i.d. Petrocol DH fused silica
capillary column; b) a 50-m, 0.25-mm i.d. poly(ethyleneglycol) (Supecol-
wax 10) bonded-phase column (0.25 mm film thickness). The identity of the
products was verified by comparison of their retention volumes and mass
spectra with those of authentic standard samples.
[4] a) S. Sieber, P. von R. Schleyer, J. Am. Chem. Soc. 1993, 115, 6987;
b) M. N. Glukhovtsev, A. Pross, A. Nicolaides, L. Radom, J. Chem.
Soc. Chem. Commun. 1995, 2347.
[5] a) D. Kuck, W. Bäther, H.-F. Grützmacher, J. Am. Chem. Soc. 1979,
101, 7154; b) D. Kuck, W. Bäther, H.-F. Grützmacher, Int. J. Mass
Spectrom. Ion Processes 1985, 67, 75.
[6] F. Cacace, M. E. Crestoni, S. Fornarini, D. Kuck, J. Am. Chem. Soc.
1993, 115, 1024.
[7] a) P. von R. Schleyer, P. Buzek, T. Müller, Y. Apeloig, H.-U. Siehl,
Angew. Chem. 1993, 105, 1558; Angew. Chem. Int. Ed. Engl. 1993, 32,
1471; b) F. Cacace, M. E. Crestoni, G. dePetris, S. Fornarini, F.
Grandinetti, Can. J. Chem. 1988, 66, 3099.
[8] C. Eaborn, J. Organom. Chem. 1975, 100, 43.
FT-ICR experiments: The experiments were performed on a Bruker
Spectrospin Apex TM47e FT-ICR spectrometer with an external ion
source and a cylindrical Infinityꢁ cell situated between the poles of a 4.7 T
Á
[9] a) M. Attina, F. Cacace, A. Ricci, J. Am. Chem. Soc. 1991, 113, 5937;
Á
b) M. Attina, F. Cacace, A. Ricci, J. Phys Chem. 1996, 100, 4424.
[10] Unless otherwise stated, all thermodynamic data are taken from the
following: S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D.
Levin, N. G. Mallard, J. Phys. Chem. Ref. Data, Suppl. 1 1988, 17.
superconducting magnet. The reactant Me3Si ion, generated in the
external ion source operated at 1608C by 70 eV electron impact on Me4Si
(nominal pressure 5 Â 10 6 Torr), was transferred into the cell and reacted
with C6X5R (X H, D; R H, D, CX3), introduced by a pulse valve up to
peak values of about 10 5 Torr for 10 2 s. In this way a partial cooling of the
1
[11] PA(DPP) 195.5 kcalmol estimated from ref. [24] on the basis of
the recent equilibrium constant measurements by FT-ICR.
[12] A. C. M. Wojtyniak, J. A. Stone, Int. J. Mass Spectrom. Ion Processes
[Me3SiC6H5R] adduct was achieved by collisional stabilization. A C3H8/
1986, 74, 59.
iC3H7CN (90:10 mol%) mixture at a total pressure of 5 Â 10 5 Torr was
[13] T. Su, M. T. Bowers, Int. J. Mass Spectrom. Ion Phys. 1975, 17,
used to prepare iC3H7CNH ions, which were allowed to protonate p-
211.
TSDPP present in the cell at the stationary pressure of 3.0 Â 10 8 Torr at
300 K. After isolation of the parent ion of interest by soft ejection
techniques, the progress of the reaction with the neutrals was followed. The
pressure readings of the ion gauge were calibrated by means of a standard
Á
[14] F. Cacace, M. Attina, S. Fornarini, Angew. Chem. 1995, 107, 754;
Angew. Chem. Int. Ed. Engl. 1995, 34, 654.
[15] M. Speranza, N. Pepe, R. Cipollini, J. Chem. Soc. Perkin Trans. II 1979,
1179.
[16] F. Cacace, M. E. Crestoni, S. Fornarini, R. Gabrielli, Int. J. Mass
Spectrom. Ion Processes 1988, 84, 17.
.
.
1 [27]
reaction CH4 CH4 ! CH5 CH3 (k 1.5 Â 10 9 cm3 molecule 1s
)
and corrected for the response factor of each neutral.[28] All parent and
product ions were characterized by exact mass measurements. The gases,
the inlets and the pulsed valves were at room temperature, except in the
case of DPP and p-TSDPP, loaded in reservoir chambers kept at a constant
1208C because of their low volatility. The pseudo-first-order rate constants
were determined from the exponential decay rate of the reactant ion
intensity and converted into second-order rate constants from the known
value of the neutral pressure.
[17] H. Schwarz, The Chemistry of Organic Silicon Compounds (Eds: S.
Patai, Z. Rappoport), Wiley, Chichester, 1989, p. 445.
[18] M. E. Crestoni, S. Fornarini, unpublished results.
[19] I. Fleming in Comprehensive Organic Chemistry, Vol. 3 (Eds.: D.
Barton, W. D. Ollis), Pergamon, Oxford, 1979.
[20] M. E. Crestoni, S. Fornarini, Angew. Chem. Int. Ed. Engl. 1994, 106,
1157; Angew. Chem. Int. Ed. Engl. 1994, 33, 1094.
[21] B. Chiavarino, M. E. Crestoni, S. Fornarini, D. Kuck, Int. J. Mass
Spectrom. Ion Processes 1995, 148, 215.
[22] M. E. Crestoni, J. Phys. Chem. 1993, 97, 6197.
[23] M. E. Crestoni, S. Fornarini, D. Kuck, J. Phys. Chem. 1995, 99,
3144.
[24] M. E. Crestoni, S. Fornarini, D. Kuck, J. Phys. Chem. 1995, 99,
3150.
Acknowledgements: This research was supported by the Italian Ministry
for University and Scientific and Technological Research (MURST). The
author is grateful to Prof. Fulvio Cacace and to Prof. Simonetta Fornarini
for valuable discussions and to Prof. Dietmar Kuck for supplying a sample
of p-TSDPP.
Received: July 21, 1997 [F775]
[25] M. E. Crestoni, S. Fornarini, Organometallics 1996, 15, 5695.
[26] a) C. Matthias, Doctoral Thesis, University of Bielefeld, 1996; b) C.
Matthias, D. Kuck, unpublished results.
[27] M. Meot-Ner in Gas Phase Ion Chemistry, Vol. 1 (Ed.: M. T. Bowers),
Academic Press, New York, 1979.
[1] F. Cacace, Acc. Chem. Res. 1988, 21, 215.
[2] D. Kuck, Mass Spectrom. Rev. 1990, 9, 583.
[3] a) F. Cacace, M. E. Crestoni, S. Fornarini, J. Am. Chem. Soc. 1992,
114, 6776; b) G. Cerichelli, M. E. Crestoni, S. Fornarini, ibid. 1992,
114, 2002.
[28] J. E. Bartmess, R. M. Georgiadis, Vacuum 1983, 33, 149.
Chem. Eur. J. 1998, 4, No. 6
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 1998
0947-6539/98/0406-0999 $ 17.50+.25/0
999