RSC Advances
Paper
acidity of 2.0NiO-Z ensure the high catalytic stability of this 12 T. Tian, W. Z. Qian, X. P. Tang, S. Yu and F. Wei, Acta Phys.-
catalyst in CO2 atmosphere.
Chim. Sin., 2010, 26, 3305–3309.
13 Y. M. Ni, A. M. Sun, X. L. Wu, G. L. Hai, J. L. Hu, T. Li and
G. X. Li, Microporous Mesoporous Mater., 2011, 143, 435–442.
14 M. Conte, J. A. Lopez-Sanchez, Q. He, D. J. Morgan,
Y. Ryabenkova, J. K. Bartley, A. F. Carley, S. H. Taylor,
C. J. Kiely, K. Khalid and G. J. Hutchings, Catal. Sci.
Technol., 2012, 2, 105–112.
4. Conclusions
Conversion of methanol to aromatics was investigated over
parent HZSM-5 and NiO-HZSM-5 in a xed-bed reactor under
CO2 and N2 ow. CO2 atmosphere signicantly improved the
aromatization activity and BTX yield over NiO-HZSM-5. Hydro- 15 J. A. Lopez-Sanchez, M. Conte, P. Landon, W. Zhou,
carbon dehydrogenation was coupled with the reverse water-gas
J. K. Bartley, S. H. Taylor, A. F. Carley, C. J. Kiely, K. Khalid
shi reaction by CO2 activated over NiO species. The coupled
and G. J. Hutchings, Catal. Lett., 2012, 142, 1049–1056.
reaction not only can effectively promote dehydrogenation of 16 Q. Miao, M. Dong, X. J. Niu, H. Wang, W. B. Fan, J. G. Wang
alkanes to form olen intermediates, but also can accelerate and Z. F. Qin, J. Fuel Chem. Technol., 2012, 40, 1230–1239.
dehydrogenation in the conversion of olen intermediates to 17 W. Q. Liu, W. N. Lei, T. M. Shang, W. H. Li, Q. F. Zhou,
aromatics, promoting methanol aromatization under the
cooperation between the acid sites and the activated CO2 on the
H. Q. Wang and J. Ren, Chem. Ind. Eng. Prog., 2011, 30,
1967–1976.
NiO-HZSM-5 catalyst. An optimized NiO-HZSM-5 with 2.0 wt% 18 H. A. Zaidi and K. K. Pant, Catal. Today, 2004, 96, 155–160.
NiO loading exhibited 50.1% total aromatic yield and 35.5% 19 Y. H. Zhao and C. Y. Cao, Petrochem. Technol., 2011, 40, 831–
BTX yield under CO2 atmosphere. It also showed high catalytic
stability resulting from the restriction of its acidity on coking, 20 R. Barthos, T. Bansagi, T. S. Zakar and F. Solymosi, J. Catal.,
carbonaceous elimination by the activated CO2-reacting 2007, 247, 368–378.
deposited coke, and the suppression of activated CO2 on the 21 X. J. Jiao, C. Yang, Z. X. Di, X. J. Guo and J. H. Wu, Adv. Mater.
834.
reduction of highly active NiO species.
Res., 2011, 233–235, 202–205.
22 Y. M. Ni, A. M. Sun, X. L. Wu, J. L. Hu, T. Li and G. X. Li, Chin.
J. Chem. Eng., 2011, 19, 439–445.
23 U. V. Mentzel, K. T. Højholt, M. S. Holm and R. Fehrmann,
Appl. Catal., A, 2012, 417–418, 290–297.
Acknowledgements
This work was nancially supported by Shanghai Key Basic
Research (Grant no. 11JC1412500) and National Natural Science 24 Y. B. Xin, P. Y. Qi, X. P. Duan, H. Q. Lin and Y. Z. Yuan, Catal.
Foundation of China (Grant no. 51174277).
Lett., 2013, 143, 798–806.
25 C. Song, K. F. Liu, D. Z. Zhang, S. L. Liu, X. J. Li, S. J. Xie and
L. Y. Xu, Appl. Catal., A, 2014, 470, 15–23.
26 A. Q. Zheng, Z. L. Zhao, S. Chang, Z. Huang, Z. Zhao,
H. X. Wu, X. B. Wang, F. He and H. B. Li, Green Chem.,
2014, 16, 2580–2586.
References
1 M. Weckhuysen, D. J. Wang, M. P. Rosynek and
J. H. Lunsford, J. Catal., 1998, 175, 338–346.
2 Y. B. Song, C. Y. Sun, W. J. Shen and L. W. Lin, Appl. Catal., A, 27 J. H. Li, Y. N. Wang, W. Z. Jia, Z. W. Xi, H. H. Chen, Z. R. Zhu
2007, 317, 266–274.
and Z. H. Hu, J. Energy Chem., in press.
3 D. M. Ren, X. S. Wang, G. Li and H. O. Liu, Chin. J. Catal., 28 J. F. Ding, Z. F. Qin, S. W. Chen, X. K. Li, G. F. Wang and
2010, 31, 348–352. J. G. Wang, J. Fuel Chem. Technol., 2010, 38, 458–461.
4 J. H. Yang, S. X. Yu, H. Y. Hu, N. B. Chu, J. M. Lu, D. H. Yin 29 X. L. Zhang, M. Yan, H. W. Lv and S. Gao, Nat. Gas Chem.
and J. Q. Wang, Chin. J. Catal., 2011, 32, 362–367. Ind., 2009, 34(4), 35–38.
5 S. Q. Ma, X. G. Guo, L. X. Zhao, S. Scott and X. H. Bao, J. 30 J. F. Ding, Z. F. Qin, X. K. Li, G. F. Wang and J. G. Wang, J.
Energy Chem., 2013, 22, 1–20.
Mol. Catal. A: Chem., 2010, 315, 221–225.
6 Z. H. Jin, S. Liu, L. Qin, Z. C. Liu, Y. D. Wang, Z. K. Xie and 31 C. H. Yoon and G. J. Kim, Kongop Hwahak, 1997, 8, 543–549.
X. Y. Wang, Appl. Catal., A, 2013, 453, 295–301.
32 F. Z. Zhang and B. Q. Xu, Prog. Chem., 2002, 14, 56–60.
7 X. Y. Yin, N. B. Chu, J. H. Yang, J. Q. Wang and Z. F. Li, Catal. 33 J. W. Wang and S. H. Gu, Prog. Chem., 1998, 10, 374–380.
Commun., 2014, 43, 218–222. 34 J. Scherzer, J. Catal., 1978, 54, 285–288.
8 J. F. Haw, W. G. Song, D. M. Marcus and J. B. Nicholas, Acc. 35 F. Pompeo, N. N. Nichio, M. G. Gonzalez and M. Montes,
Chem. Res., 2003, 36, 317–326. Catal. Today, 2005, 107–108, 856–862.
9 J. G. Zhang, W. Z. Qian, X. P. Tang, K. Shen, T. Wang, 36 A. H. Fakeeha, W. U. Khan, A. S. Al-Fatesh and
X. F. Huang and F. Wei, Acta Phys.-Chim. Sin., 2013, 29,
1281–1288.
10 Q. Y. Wang, S. T. Xu, J. R. Chen, Y. X. Wei, J. Z. Li, D. Fan,
A. E. Abasaeed, Chin. J. Catal., 2013, 34, 764–768.
37 A. J. Maia, B. Louis, Y. L. Lam and M. M. Pereiraa, J. Catal.,
2010, 269, 103–109.
Z. X. Yu, Y. Qi, Y. L. He, S. L. Xu, C. Y. Yuan, Y. Zhou, 38 J. Gao, Z. Y. Hou, J. Z. Guo, Y. H. Zhu and X. M. Zheng, Catal.
J. B. Wang, M. Z. Zhang, B. L. Su and Z. M. Liu, RSC Adv.,
2014, 4, 21479–21491.
11 W. Fang, J. Tang, X. C. Huang, W. B. Shen, Y. B. Song and
C. Y. Sun, Chin. J. Catal., 2010, 31, 264–266.
Today, 2008, 131, 278–284.
39 J. H. Li, H. Xiang, M. Liu, Q. L. Wang, Z. R. Zhu and Z. H. Hu,
Catal. Sci. Technol., 2014, 4, 2639–2649.
44384 | RSC Adv., 2014, 4, 44377–44385
This journal is © The Royal Society of Chemistry 2014