Page 3 of 4
Chemical Science
Please do not adjust margins
Journal Name
COMMUNICATION
Figure 1. Kinetic profiles of the formation of B1 using various catalytic systems
selective dehydrogenative borylation ofDteOrI:m10in.1a0l39a/lCk6ySnCe0s26w6i8thK
pinacolborane, using an inexpensive metal center supported
by readily accessible ligands.16 Preliminary mechanistic studies
suggest the pivotal role of a σ,π-bis(copper) acetylide A and a
copper hydride C.
Acknowledgments
The authors gratefully acknowledge financial support from the
DOE (DE-FG02-13ER16370).
Notes and References
[1]
J. F. Hartwig, Acc. Chem. Res. 2012, 45, 864; A. J. Lennox and G. C.
Lloyd-Jones, Chem. Soc. Rev. 2014, 43, 412.
[a] Reactions were carried out in a J-Young NMR tube at RT under an argon atmosphere
using a 1:1 mixture (0.45 mmol) of p-tolylacetylene and pinacolborane in 1 mL of C6D6.
[b] 2.5 mol% of F and 5 mol% Et3N; no trace of B1 was observed, instead D1 was
obtained quantitatively. [c] 2.5 mol% of F, Et3N and Et3NH.OTf. [d] 2.5 mol% of A, 1.25
mol% Et3N and 3.75 mol% Et3NH.OTf. [e] 2.5 mol% of L1CuOTf and 5 mol% of Et3N.
[2]
H. Chen, S. Schlecht, T. C. Semple and J. F. Hartwig, Science 2000,
287, 1995.
[3]
[4]
J. Y. Cho, M. K. Tse, D. Holmes, R. E. Maleczka Jr. and M. R. Smith III,
Science 2002, 295, 305.
J. F. Hartwig, Chem. Soc. Rev. 2011, 40, 1992; I. A. Mkhalid, J. H.
Barnard, T. B. Marder, J. M. Murphy and J. F. Hartwig, Chem. Rev. 2010,
110, 890.
Scheme 3. Evidence for the pivotal role of the dinuclear copper complex A
F (2.5 mol%)
BPin
[5]
C. I. Lee, J. Zhou and O. V. Ozerov, J. Am. Chem. Soc. 2013, 135, 3560;
C. I. Lee, N. A. Hirscher, J. Zhou, N. Bhuvanesh and O. V. Ozerov,
Organometallics 2015, 34, 3099; C. I. Lee, W. C. Shih, J. Zhou, J. H.
Reibenspies and O. V. Ozerov, Angew. Chem., Int. Ed. 2015, 54, 14003;
C. I. Lee, J. C. DeMott, C. J. Pell, A. Christopher, J. Zhou, N. Bhuvanesh
and O. V. Ozerov, Chem. Sci. 2015, 6, 6572; C. J. Pell and O. V. Ozerov,
Inorg. Chem. Front. 2015, 2, 720.
Tol
D1
Et3N (5 mol%)
RT, C6D6
95% (NMR yield)
Tol
H
+
PinBH
F (2.5 mol%)
Tol
BPin
B1
Et3N (2.5 mol%)
Et3NH.OTf (2.5 mol%)
RT, C6D6
96% (NMR yield)
[6]
[7]
[8]
T. Tsuchimoto, H. Utsugi, T. Sugiura and S. Horio, Adv. Synth. Catal.
2015, 357, 77.
L
TfO
Ph
Et3NH.OTf (0.5 eq)
RT, CDCl3, 1 min
R. Barbeyron, E. Benedetti, J. Cossy, J. J. Vasseur, S. Arseniyadis and
M. Smietana, Tetrahedron 2014, 70, 8431.
Cu
+
+
H
Ph
L
Cu
Ph
F
L
Cu
Et3N
L. Jin, D. R. Tolentino, M. Melaimi and G. Bertrand, Sci. Adv. 2015, 1,
e1500304; L. Jin, E. A. Romero, M. Melaimi and G. Bertrand, J. Am.
Chem. Soc. 2015, 137, 15696.
A
Scheme 4. Evidence for the formation of the copper hydride C
[9]
For reviews on CAACs, see: M. Melaimi, M. Soleilhavoup and G.
Bertrand, Angew. Chem., Int. Ed. 2010, 49, 8810; D. Martin, M. Melaimi,
M. Soleilhavoup and G. Bertrand, Organometallics 2011, 30, 5304; M.
Soleilhavoup and G. Bertrand, Acc. Chem. Res. 2015, 48, 256.
O
O
LCuOTf (2.5 mol%)
H
D
D
B3
BH
+
D
+
Ph
Et3N (5 mol%)
CD2Cl2, RT, 3h
Ph
90% D-incorporation
[10] For the synthesis of CAACs, see: V. Lavallo, Y. Canac, C. Präsang, B.
Donnadieu and G. Bertrand, Angew. Chem., Int. Ed. 2005, 44, 5705; R.
Jazzar, R. D. Dewhurst, J. B. Bourg, B. Donnadieu, Y. Canac and G.
Bertrand, Angew. Chem., Int. Ed. 2007, 46, 2899; R. Jazzar, J. B. Bourg,
R. D. Dewhurst, B. Donnadieu and G. Bertrand, J. Org. Chem. 2007, 72,
3492.
Styrene-D
75% D-incorporation
L
Cu
H
L
Cu
C
H
D
Ph
D
Ph
or
[11] For other mechanistic studies, involving the transient formation of σ,π-
bis(copper) acetylides, see: V. O.Rodionov, V. V. Fokin and M. G. Finn,
Angew. Chem., Int. Ed. 2005, 44, 2210; F. Himo, T. Lovell, R. Hilgraf, V.
V. Rostovtsev, L. Noodleman, K. B. Sharpless and V. V. Fokin, J. Am.
Chem. Soc. 2005, 127, 210; M. Ahlquist and V. V. Fokin, Organometallics
2007, 26, 4389; B. F. Straub, Chem. Commun. 2007, 3868; C. Nolte, P.
Mayer and B. F. Straub, Angew. Chem., Int. Ed. 2007, 46, 2101; A.
Makarem, R. Berg, F. Rominger and B. F. Straub, Angew. Chem., Int. Ed.
2015, 54, 7431; B. T. Worrell, J. A. Malik and V. V. Fokin, Science 2013,
340, 457.
Et3ND.OTf
of L1CuH formation in this process is the observation of a small
amount of styrene derivatives E in our experiments (Table 1).
Indeed, copper hydrides are known to undergo 1,2-addition
across alkynes to generate copper vinyl complexes, which by
protonolysis give the alkenes.15 Consistent with this
hypothesis, a catalytic experiment using deuterium labelled
phenyl acetylene under our optimized conditions, but in CD2Cl2
instead of C6D6 (Table 1, entry 6), afforded B3 and Styrene-D
(75% D-incorporation) (Scheme 4).
[12] A. J. Arduengo, R. Krafczyk and R. Schmutzler, Tetrahedron 1999, 55,
14523.
[13] For reviews, see: J. D. Egbert, C. S. J. Cazin and S. P. Nolan, Catal. Sci.
Technol. 2013, 3, 912; C. Deutsch, N. Krause and B. H. Lipshutz, Chem.
Rev. 2008, 108, 2916. B. H. Lipshutz, Synlett 2009, 509.
[14] For an example of diligated copper hydride, see: B. H. Lipshutz and B. A.
Frieman, Angew. Chem., Int. Ed. 2005, 44, 6345.
Conclusions
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins