Angewandte
Chemie
the technical application of homogeneous transition-metal
catalysis. This was the first systematic investigation that
focused on whether catalyst leaching can be influenced and
which influencing factors are significant. It was shown that the
product has an unfavorable influence on catalyst leaching.
Furthermore we demonstrated that catalyst leaching can be
minimized effectively by reducing the separation temperature
and the catalyst concentration and by increasing of the
polarity difference between the TMS solvent components.
The TMS catalyst recycling concept offers the possibility for
the development and realization of industrial processes of
homogeneous catalyzed reactions.
[5] a) B. Cornils, W. A. Herrmann, Aqueous-Phase Organometallic
Catalysis: Concepts and Applications, Wiley-VCH, Weinheim,
Behr, B. Turkowski, R. Roll, R. Schçbel, G. Henze, Top.
Johnen, C. Awungacha, J. Mol. Catal. A 2008, 285, 20 – 28; g) A.
Behr, A. Wintzer, Chem. Ing. Tech. 2011, 83, 1356 – 1370.
[7] a) C. Vogl, E. Pꢃtzold, C. Fischer, U. Kragl, J. Mol. Catal. A 2005,
232, 41 – 44; b) E. Billig, A. G. Abatjoglou, D. R. Bryant,
EP0214622B1, 1992; c) A. Behr, D. Obst, C. Schulte, T. Schosser,
J. Mol. Catal. A 2003, 206, 179 – 184; d) X. Y. Huang, R. X. Li, H.
Chen, X. J. Li, Chin. Chem. Lett. 2003, 198, 1 – 7; e) M.
Haumann, M. Jakuttis, R. Franke, A. Schçnweiz, P. Wasser-
Schçnweiz, S. Werner, R. Franke, K. D. Wiese, M. Haumann, P.
[8] a) H. Chen, Y. Z. Li, R. X. Li, X. J. Li, J. Mol. Catal. A 2003, 232,
Yang, X. Y. Bi, Z. S. Mao, J. Mol. Catal. A 2002, 187, 35 – 46;
d) M. Yuan, H. Chen, R. X. Li, Y. Z. Li, X. J. Li, Catal. Lett.
2004, 94, 15 – 16; e) Y. Zhang, Z. S. Mao, J. Chen, Ind. Eng.
Fischer, M. Frank, J. Mol. Catal. A 2003, 200, 95 – 103; h) H.
2285; i) Z. J. Li, J. Y. Jiang, Y. H. Wang, Chin. Chem. Lett.
2010, 21, 515 – 518.
[9] a) M. Haumann, H. Koch, P. Hugo, R. Schomꢃcker, Appl. Catal.
Y. Z. Li, X. J. Li, Chin. Chem. Lett. 2004, 15, 1022 – 1024.
[10] a) A. Behr, C. Fꢃngewisch, J. Mol. Catal. A 2003, 197, 115 – 126;
b) A. Behr, Q. Miao, J. Mol. Catal. A 2004, 222, 127 – 132; c) A.
Behr, R. Roll, J. Mol. Catal. A 2005, 239, 180 – 184; d) A. Behr,
Experimental Section
In a typical hydroformylation reaction the catalyst precursor [Rh-
(acac)(CO)2] and the ligand Biphephos (ratio 1:5) were dissolved in
the solvents (30 mL DMF/decane 50:50 (wt%)). After the addition of
1-alkene (0.026 mol) the reaction mixture was transferred under
argon atmosphere into a 300 mL steel Parr autoclave. The autoclave
was adjusted with 20 bar of synthesis gas (CO/H2 1:1). The autoclave
was heated to 1008C and the reaction time of 1 h started at the onset
of heating. Samples were removed with a capillary and the reaction
progress was recorded. The reaction was stopped by cooling with an
ice-water bath. After removal of the synthesis gas, the reaction
mixture was tempered to the required separation temperature in
a double-walled 50 mL separating funnel with a cooling circulation
thermostat (HAAKE K40, Thermo Electron Corporation HAAKE
DC50, internal temperature regulation, tempering medium: ethylene
glycol/water 1:1). After phase separation samples from both the
product and catalyst phase were analyzed by gas chromatography and
emission spectrometry.
Received: October 29, 2012
Published online: December 12, 2012
Keywords: catalyst recycling · homogeneous catalysis ·
.
hydroformylation · rhodium · thermomorphic solvent mixtures
910; b) A. Behr, D. Obst, B. Turkowski, J. Mol. Catal. A 2005,
158 – 165; d) M. S. Shaharun, H. Mukhtar, B. K. Dutta, Chem.
Eng. Sci. 2008, 63, 3024 – 3035; e) M. S. Shaharun, H. Mukhtar,
B. K. Dutta, Chem. Eng. Sci. 2010, 65, 3903 – 3905; f) M. S.
Shaharun, B. K. Dutta, H. Mukhtar, S. Maitra, Chem. Eng. Sci.
2010, 65, 273 – 281; g) M. S. Shaharun, J. Appl. Sci. 2011, 11,
[12] Y. C. Yang, J. Y. Jiang, Y. H. Wang, C. Liu, Z. L. Jin, J. Mol.
Catal. A 2007, 261, 288 – 292.
[13] a) E. Schꢃfer, Y. Brunsch, G. Sadowski, A. Behr, Ind. Eng.
[2] a) A. Behr, Angewandte Homogene Katalyse, Wiley-VCH,
Weinheim, 2008, pp. 1 – 28; b) A. Behr, P. Neubert, Applied
Homogeneous Catalysis, Wiley-VCH, Weinheim, 2012, pp. 1 –
32; c) D. J. Cole-Hamilton, R. P. Tooze, Catalyst Separation,
Recovery and Recycling: Chemistry and Process Design,
Springer, Dordrecht, 2006, pp. 1 – 36.
[3] a) M. Baerns, A. Behr, A. Brehm, J. Gmehling, H. Hofmann, U.
Onken, A. Renken, Technische Chemie, Wiley-VCH, Weinheim,
2006, pp. 574 – 576; b) P. W. N. M. van Leeuwen, C. Claver,
Rhodium catalyzed Hydroformylation, Kluwer Academic Pub-
lishers, Dordrecht, 2000, pp. 1 – 280; c) K. Weissermehl, H. J.
Arpe, Industrial Organic Chemistry, Wiley-VCH, Weinheim,
2003, pp. 127 – 140; d) B. Cornils, W. A. Herrmann, I. T.
Horvꢂth, W. Leitner, S. Mecking, H. Olivier-Bourbigou, D.
Vogt, Multiphase Homogeneous Catalysis, Vol. 1 and 2, Wiley-
VCH, Weinheim, 2008.
Angew. Chem. Int. Ed. 2013, 52, 1586 –1589
ꢀ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
1589