NJC
Paper
Phenylimidazophenanthrolines By Acetonitrile Hydrolysis, 27 (a) N. G. Jovic, A. S. Masadeh, A. S. Kremenovic, B. V. Antic,
CrystEngComm, 2017, 19(43), 6533–6539; (c) W.-K. Dong, J.-
C. Ma, L.-C. Zhu, Y.-X. Sun, S. F. Akogun and Y. Zhang, A
Series of Heteromultinuclear Zinc(II)–Lanthanide(III) Com-
plexes Based on 3-Meosalamo: Syntheses, Structural Char-
acterizations, and Luminescent Properties, Cryst. Growth
Des., 2016, 16(12), 6903–6914.
J. L. Blanusa, N. D. Cvjeticanin, G. F. Goya, M. V. Antisari
and E. S. Bozin, Effect of Thermal Annealing on Structural
and Magnetic Properties of Lithium ferrite nanoparticles,
J. Phys. Chem., 2009, 113, 20559–20567; (b) B. H. Toby, R
factors in Rietveld analysis: How Good is Good Enough?,
Powder Diffr., 2006, 21, 67–70.
12 J. E. Post and D. L. Bish, Rietveld Refinement of Crystal 28 (a) G. A. Kumar, R. E. Riman and J. G. Brennan, NIR
Structures Using Powder X-ray Diffraction Data, Modern Pow-
der Diffraction, 1989, pp. 277–308.
13 W. I. F. David, Powder diffraction peak shapes. Parameter-
ization of the pseudo-Voigt as a Voigt function, J. Appl.
Crystallogr., 1986, 19, 63–64.
14 (a) M. A. Spackman and P. G. Byrom, Chem. Phys. Lett., 1997,
267, 215; (b) J. J. McKinnon, A. S. Mitchell and
M. A. Spackman, Chem. – Eur. J., 1998, 4, 2136.
15 N. F. Chilton, R. P. Anderson, L. D. Turner, A. Soncini and
K. S. Murray, PHI: A Powerful New Progrm for the Analysis
Emission From Molecules and Clusters with Lanthanide–
Chalcogen Bonds, Coord. Chem. Rev., 2014, 273–274,
111–124; (b) M. Caricato, C. Coluccini, D. A. Vander Griend,
A. Forni and D. Pasini, From Red to Blue Shift: Switching
the Binding Affinity from the Acceptor to the Donor End by
Increasing the P-Bridge in Push–Pull Chromophores with
Coordinative Ends, New J. Chem., 2013, 37(9), 2792–2799;
(c) N. Sabbatini, M. Guardigli and J.-M. Lehn, Luminescent
Lanthanide Complexes as Photochemical Supramolecular
Devices, Coord. Chem. Rev., 1993, 123(1–2), 201–228.
of Anisotropic Monomeric and Exchange-Coupled Polynuc- 29 (a) O. V. Kotova, S. V. Eliseeva, A. S. Averjushkin, L. S. Lepnev,
lear d- and f- block Complexes, J. Comput. Chem., 2013, 34,
1164–1175.
A. A. Vaschenko, A. Y. Rogachev, A. G. Vitukhnovskii and
N. P. Kuzmina, Zinc(II) Complexes with Schiff Bases Derived
from Ethylenediamine and Salicylaldehyde: The Synthesis
and Photoluminescent Properties, Russ. Chem. Bull., 2008,
57(9), 1880–1889; (b) L. Thunus and R. Lejeune, Overview of
Transition Metal and Lanthanide Complexes as Diagnostic
Tools, Coord. Chem. Rev., 1999, 184(1), 125–155.
16 N. Dwivedi, S. K. Panja, A. Verma, T. Takaya, K. Iwata,
S. S. Sunkari and S. Saha, NIR Luminescent Heterodinuclear
[ZnII LnIII] Complexes: Synthesis, Crystal Structures and
Photophysical properties, J. Lumin., 2017, 192, 156–165.
17 N. Dwivedi, S. S. Sunkari, A. Verma and S. Saha, Molecular
Packing Dependent Solid-State Fluorescence Response of 30 E. Gallo, E. Gorelov, A. A. Guda, A. L. Bugaev, F. Bonino,
Supramolecular Metal–Organic Frameworks: Phenoxo-
Bridged Trinuclear Zn(II) Centered Schiff Base Complexes
with Halides and Pseudohalides, Cryst. Growth Des., 2018,
18(9), 5628–5637.
E. Borfecchia, G. Ricchiardi, D. Gianolio, S. Chavan and
C. Lamberti, Effect of Molecular Guest Binding on the d–d
Transitions of Ni2+ of CPO-27-Ni: A Combined UV–Vis,
Resonant-Valence-To-Core X-Ray Emission Spectroscopy, and
Theoretical Study, Inorg. Chem., 2017, 56(23), 14408–14425.
18 W. I. F. David, Powder diffraction: Least-squares and beyond,
J. Res. Natl. Inst. Stand. Technol., 2004, 109, 107–123.
19 R. Y. Young, The Rietveld Method, Oxford University Press,
Oxford, 1996.
20 S. Carbonin, F. Martignago, G. Menegazzo and A. Negro, X-
ray single-crystal study of spinels: in situ heating, Phys.
Chem. Miner., 2002, 29, 503–514.
´
´
31 Ł. Czekanski, S. K. Hoffmann, P. Barczynski, A. G˛asowska,
R. Bregier-Jarz˛ebowska, A. Zalewska, J. Goslar, M. Ratajczak-
Sitarz and A. Katrusiak, Crystal Structure and Physical
Properties of 1-Methyl-3-(Carboxymethyl)Benzimidazolium
BetaineꢁCubr2 In Crystal and Water Solution, New J. Chem.,
2016, 40(12), 10526–10535.
21 G. M. Sheldrick, A short history of SHELX, Acta Crystallogr., 32 H.-R. Wen, J.-J. Hu, K. Yang, J.-L. Zhang, S.-J. Liu, J.-S. Liao
Sect. A: Found. Adv., 2008, 64(1), 112–122.
22 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard
and C.-M. Liu, Family of Chiral ZnII–LnIII (Ln = Dy and Tb)
Heterometallic Complexes Derived from the Amine–Phenol
Ligand Showing Multifunctional Properties, Inorg. Chem.,
and H. Puschmann, ‘‘OLEX2:
A Complete Structure
Solution, Refinement and Analysis Program’’, J. Appl. Crys-
tallogr., 2009, 42, 339–341.
23 G. M. Sheldrick, Crystal Structure Refinemnet with SHELXL,
ActaCrystallogr., Sect. C: Struct. Chem., 2015, 71, 3–8.
24 L. J. Farrugia, WinGX and ORTEP for Windows: an Update,
J. Appl. Crystallogr., 2012, 45, 849–854.
25 Y. M. Abbas, S. A. Mansour, M. H. Ibrahim and S. E. Ali,
Microstructure characterization and cation distribution of
nanocrystalline cobalt ferrite, J. Magn. Magn. Mater., 2011,
323, 2748–2756.
2020, 59(5), 2811–2824.
II
´ ˜
33 B. Miroslaw, B. Cristovao and Z. Hnatejko, Heterometallic Zn –
LnIII–ZnII Schiff Base Complexes with Linear or Bent Confor-
mation—Synthesis, Crystal Structures, Luminescent and Mag-
netic Characterization, Molecules, 2018, 23(7), 1761–1777.
34 H.-R. Wen, J.-L. Zhang, F.-Y. Liang, K. Yang, S.-J. Liu,
J.-S. Liao and C.-M. Liu, TbIII/3d–TbIII Clusters Derived from
a 1,4,7-Triazacyclononane-Based Hexadentate Ligand with
Field-Induced Slow Magnetic Relaxation and Oxygen-
Sensitive Luminescence, New J. Chem., 2019, 43(10),
4067–4074.
26 M. Bhagwat, A. V. Ramaswamy, A. K. Tyagi and
V. Ramaswamy, Rietveld Refinement Study of Nanocrystal- 35 H.-R. Wen, P.-P. Dong, S.-J. Liu, J.-S. Liao, F.-Y. Liang and
line Copper Doped Zirconia, Mater. Res. Bull., 2003, 38,
1713–1724.
C.-M. Liu, 3d–4f Heterometallic Trinuclear Complexes
Derived from Amine-Phenol Tripodal Ligands Exhibiting
2708 | New J. Chem., 2021, 45, 2696--2709
This journal is ©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2021