use of the resources provided by the EaStChem Research
Computing Facility (http://www.eastchem.ac.uk/rcf). This
facility is partially supported by the eDIKT initiative
(
http://www.edikt.org).
Notes and references
16
17
z The chemical and electrochemical preparation of a neutral
copper dithiolene has previously been reported. However, it is likely
that it is the TTF-functionalised ligands, used in both these systems,
that are oxidised, rather than the dithiolene core. It is noteworthy that
neither study analysed the solution properties of these species, likely
due to poor solubility.
Fig. 3 Experimental and calculated UV/Vis/NIR spectroscopy of an
electrodeposited film of neutral 1 on FTO; (a) Thin film spectra,
compared to the stable monoanionic complex [TMA][1] in MeCN, and
showing the decomposition of neutral 1 upon dissolution. Quotation
marks ‘‘x’’ denote that the species is no longer its identity upon
dissolution, due to an unknown decomposition process; (b) Thin film
spectrum of 1 compared to calculated spectra from TD-DFT.
1 M. C. Aragoni, M. Arca, M. Caironi, C. Denotti,
F. A. Devillanova, E. Grigotti, F. Isaia, F. Laschi, V. Lippolis,
D. Natali, L. Pala, M. Sampietro and P. Zanello, Chem. Commun.,
2
004, 1882.
two dithiolene rings distorted by 43.561 away from co-planarity.
Following geometry optimisation, information regarding the
nature of the electronic transitions for 1 was sought using
time-dependent density functional theory (TD-DFT). This
was done to model the electronic absorption spectrum, for
comparison with the electrodeposited thin films, and to probe
the origins of the individual absorptions. TD-DFT calculations
showed reasonable agreement with the experimentally determined
absorption spectrum (Fig. 3b), and showed the low energy
NIR absorption to be predominantly due to a HOMO -
LUMO transition (Table S2, ESIw). Since these orbitals
are almost exclusively located on the dithiolene SCCS cores
2 S. Dalgleish and N. Robertson, Chem. Commun., 2009, 5826;
S. Dalgleish and N. Robertson, Coord. Chem. Rev., 2010, 254,
1
549.
3
4
5
J. Peet, A. B. Tamayo, X.-D. Dang, J. H. Seo and T.-Q. Nguyen,
Appl. Phys. Lett., 2008, 93, 163306.
U. T. Mueller-Westerhoff and B. Vance, Tetrahedron, 1991, 47,
9
09.
S. Kokatam, K. Ray, J. Pap, E. Bill, W. Geiger, R. J. LeSuer,
P. H. Rieger, T. Weyhermuller, F. Neese and K. Wieghardt, Inorg.
¨
Chem., 2007, 46, 1100; R. Perochon, P. Davidson, S. Rouzie
F. Camerel, L. Piekara-Sady, T. Guizouarn and M. Formigue
J. Mater. Chem., 2011, 21, 1416 and references therein.
T. D. Anthopoulos, S. Setayesh, E. Smits, M. Colle, E. Cantatore,
B. de Boer, P. W. M. Blom and D. M. de Leeuw, ADV. Mater.,
006, 18, 1990; T. D. Anthopoulos, G. C. Anyfantis,
G. C. Papavassilou and D. M. de Leeue, Appl. Phys. Lett., 2007,
0, 122105; H. Wada, T. Taguchi, B. Noda, T. Kambayashi,
T. Mori, K. Ishikawa and H. Takezoe, Org. Electron., 2007, 8, 759.
`
re,
´
,
6
¨
2
(
Fig. S4, ESIw), this may explain the relatively small difference
in energy of the NIR absorption in the absorption spectra of
9
ꢁ1
both films (DlNIR E 31 cm ). The thin film spectrum was
generally well reproduced by TD-DFT, consistent with a film
formed of neutral copper dithiolene complexes, and that the
low energy NIR absorption was due to a p - p* transition
within the ligand moieties—analogous to the isoelectronic
7 R. K. Szilagyi, B. S. Lim, T. Glaser, R. H. Holm, B. Hedman,
K. O. Hodgson and E. I. Solomon, J. Am. Chem. Soc., 2003, 125,
9
158; R. Sarangi, S. D. George, D. J. Rudd, R. K. Szilagyi,
X. Ribas, C. Rovira, M. Almeida, K. O. Hodgson, B. Hedman
and E. I. Solomon, J. Am. Chem. Soc., 2007, 129, 2316; G. Bruno,
M. Almeida, F. Artizzu, J. C. Dias, M. L. Mercuri, L. Pilia,
C. Rovira, X. Ribas, A. Serpe and P. Deplano, Dalton Trans.,
7
monoanionic nickel dithiolenes. It should be noted that
2
S. Dalgleish, H. Yoshikawa, M. M. Matsushita, K. Awaga and
N. Robertson, Chem. Sci., 2011, 2, 316.
´ `
S. Raba c¸ a, A. C. Cerdeira, A. I. S. Neves, S. I. G. Dias, C. Meziere
010, 39, 4566.
copper dithiolenes have been shown to have hugely variable
coordination geometry around the metal centre, and that the
solution geometry (and thus the colour) is not always the same
8
9
18
and M. Almeida, Polyhedron, 2009, 28, 1069.
0 G. A. Razuvaev, V. K. Cherkasov and G. A. Abakumov,
as that in the solid state. Within this limitation, the consistency
between the calculated and experimental spectra is striking.
In summary, by exploiting the reduced solubility of the
neutral species, compared to the monoanionic species, thin
films of two neutral copper dithiolenes, highly active in the
NIR region, were prepared. We have previously reported on
the use of electrodeposition as a novel route to fabricate thin
films of nickel bis-dithiolenes, whose solubility is too low, and
melting point too high for effective processing by solution, or
1
J. Organomet. Chem., 1978, 160, 361.
11 C. Mahadevan, J. Crystallogr. Spectrosc. Res., 1986, 16, 347.
1
1
1
2 R. Ditchfield, W. J. Hehre and J. A. Pople, J. Chem. Phys., 1971,
4, 724.
3 V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern and
L. A. Curtiss, J. Comput. Chem., 2001, 22, 976.
4 J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson,
M. R. Pederson, D. J. Singh and C. Fiolhais, Phys. Rev. B:
Condens. Matter, 1993, 48, 4978.
5
1
1
5 J. P. Perdew, K. Burke and Y. Wang, Phys. Rev. B: Condens.
Matter, 1996, 54, 16533.
6 K. Ueda, M. Goto, M. Iwamatsu, T. Sugimoto, S. Endo,
N. Toyota, K. Yamamoto and H. Fujita, J. Mater. Chem., 1998,
8
vapour methods, respectively. This study demonstrates an
additional benefit of film formation by electrodeposition,
where a functional, robust thin film can be prepared, even
for a class of compounds where the solution stability has
previously proven prohibitively low to allow conventional
isolation.
8
, 2195.
17 H. Tanaka, H. Kobayashi and A. Kobayashi, J. Am. Chem. Soc.,
2002, 124, 10002.
1
8 C. F. Cleary, N. Robertson, M. Takahashi, A. E. Underhill,
D. E. Hibbs, M. B. Hursthouse and K. M. A. Malik, Polyhedron,
We thank the EPSRC and the Japanese Science and
Technology agency (JST) for funding. This work has made
1997, 16, 1117; D. J. White, L. Cronin, S. Parsons, N. Robertson,
P. A. Tasker and A. P. Bisson, Chem. Commun., 1999, 1107.
This journal is c The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 7089–7091 7091