Please do not adjust margins
ChemComm
Page 4 of 5
DOI: 10.1039/C7CC02093G
COMMUNICATION
Journal Name
1000 h. The designed CSNTs-623 catalyst with proper Cu+ ratio 2. A. Acosta-Ramirez, M. Bertoli, D. G. Gusev and M. Schlaf,
and nanoparticle size exhibited excellent catalytic performance Green Chem., 2012, 14, 1178.
and superior stability, mainly due to the strong metal-support 3. T. Zell, Y. Ben-David and D. Milstein, Angew. Chem. Int. Ed.,
interactions by the in situ exsolution of Cu nanoparticles from
the nanotube structure of CSNTs.
2014, 53, 4685.
4. H. Yue, X. Ma and J. Gong, ACC. Chem. Rec., 2014, 47, 1483.
The selective hydrogenation of other esters to 5. T. J. Korstanje, J. I. Vlugt, C. J. Elsevier and B. Bruin, Science,
corresponding alcohols was also investigated under optimal 2015, 350, 298.
reaction conditions (Table 3). The hydrogenation of diethyl 6. K. L. Deutsch and B. H. Shanks, J. Catal., 2012, 285, 235.
malonate yielded 98.4% conversion and 79.9% 1,3- 7. M. Behrens, F. Studt, I. Kasatkin, S. Kuhl, M. Havecker, F.
a
propanediol selectivity. Almost a full conversion and more
than 98% selectivity was obtained when using ethyl acetate
and DMO were used as substrates.
Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr and B. L.
Kniep, Science, 2012, 336, 893.
8. L. Chen, P. Guo, M. Qiao, S. Yan, H. Li, W. Shen, H. Xua and
K. Fan, J. Catal., 2008, 257, 172.
In summary, a facile hydrothermal approach is developed to
prepare CSNTs with uniform thin nanotube morphology. Then 9. R. Ouyang, J. Liu and W. Li, J. Am. Chem. Soc., 2013, 135
the CSNTs-T catalyst prepared by in situ exsolution strategy 1760.
exhibits excellent catalytic performance and superior stability 10. C. T. Campbell, S. C. Parker and D. E. Starr, Science, 2002,
for DMCD hydrogenation reaction compared with the Cu/SiO2 298, 811.
catalysts synthesized by traditional methods. The yield of 11. X. Zheng, H. Lin, J. Zheng, X. Duan and Y. Yuan, ACS Catal.,
CHDM remains up to 95% during 1000 h under optimal 2013, , 2738.
reaction conditions. The reduction temperature significantly 12. Y. Huang, H. Ariga, X. Zheng, X. Duan, S. Takakusagi, K.
influences the Cu+/Cu0 ratio on CSNTs-T. The suitable
Asakura and Y. Yuan, J. Catal., 2013, 307, 74.
,
3
temperature ranges from 523 K to 723 K, affording the surface 13. Z. He, H. Lin, P. He, and Y. Yuan, J. Catal., 2011, 277, 54.
Cu+ concentration more than 60%. Further increasing the 14. H. Lin, X. Zheng, Z. He, J. Zheng, X. Duan and Y. Yuan, Appl.
reduction temperature the nanotube structure of CSNTs can Catal. A: Gen., 2012, 445/446, 287.
cause partial destruction. Thus, the in situ exsolution of Cu 15. Y. Wang, X. Duan, J. Zheng, H. Lin, Y. Yuan, H. Ariga, S.
nanoparticles from CSNTs with highly metal dispersion and
strong metal-support interactions are beneficial to maintain its
Takakusagi and K. Asakura, Catal. Sci. Technol., 2012, 2,
1637.
particle size and Cu+ species during reaction. The reduced 16. A. Yin, C. Wen, X. Guo, W. Dai and K. Fan, J. Catal., 2011, 280
,
CSNTs catalyst shows potential applications in high-
temperature hydrogenation reactions. The approach is 17. H. Yue, Y. Zhao, S. Zhao, B. Wang, X. Ma and J. Gong, Nat.
envisioned to fabricate other nano-socketed materials using Commun., 2013, 10, 3339.
corresponding precursors such as Co phyllosilicate for catalytic 18. C. Zhang, W. Zhu, S. Li, G. Wu, X. Ma, X. Wang and J. Gong,
77.
applications.
Chem. Commun., 2013, 49, 9383.
19. D. Neagu, T. Oh, D. N. Miller, H. Ménard, S. M. Bukhari, S. R.
Gamble, R. J. Gorte, J. M. Vohs and J. T. S. Irvine, Nat.
Commun., 2015, 6, 8120.
Table 3
over CSNTs-623
Catalytic performance of selective hydrogenation of esters
20. Y. Sun, Y. Zhang, J. Chen, J. Li, Y. Zhu, Y. Zeng, B. Amirkhiz, J.
Li, B. Hua and J. Luo, Nano Lett., 2016, 16, 5303.
21. S. Liu, Q. Liu and J. Luo, ACS Catal., 2016, 6, 6219.
22. Z. Du, H. Zhao, S. Yi, Q. Xia, Y. Gong, Y. Zhang, X. Cheng, Y. Li,
L. Gu and K. Świerczek, ACS Nano, 2016, 10, 8660.
23. Y. Sun, Y. Zhang, J. Chen, J. Li, Y. Zhu, Y. Zeng, B. S. Amirkhiz,
J. Li, B. Hua and J. Luo, Nano Lett., 2016, 16, 5303.
24. R. Berg, C. F. Elkjaer, C. J. Gommes, I. Chorkendorff, J.
Sehested, P. E. de Jongh, K. P. de Jong and S. Helveg, J. Am.
Chem. Soc., 2016, 138, 3433.
Ester
P /
MPa
5
T / Product
K
Conversion Selectivity
/ %
/ %
Diethyl
483 1,3-
Propanediol
493 Ethanol
98.4
79.9
malonatea
Ethyl
3
3
99.2
99.6
98.5
98.3
acetateb
Dimethyl
oxalatec
453 Ethylene
glycol
Reaction conditions: a H2/ester molar ratio = 250, and LHSV=0.6 h–1
.
b H2/ester molar ratio = 80, and LHSV = 1.0 h–1. c H2/ester molar
25. X. Wang, J. Zhuang, J. Chen, K. Zhou and Y. Li, Angew. Chem.
Int. Ed., 2004, 43, 2017.
ratio = 60, and LHSV=1.2 h–
.
1
26. J. Gong, H. Yue, Y. Zhao, S. Zhao, L. Zhao, J. Li, S. Wang, and
X. Ma, J. Am. Chem. Soc., 2012, 134, 13922.
27. S. Richard Turner, J. Polym. Sci., Part A: Polym. Chem., 2004,
42, 5847.
28. H. C. Ki and O. O. Park, Ploymer, 2001, 42, 1849.
29. J. M. Thomas, B. Johnson, R. Raja, G. Sankar and P. A.
Midglely, Acc. Chem. Res., 2003, 36, 20.
This work was supported by the Natural Science Foundation
of China (21403178, 91545115, 21473145, and 21503173), the
Program for Innovative Research Team in Chinese Universities
(No. IRT_14R31), the Fundamental Research Funds for the
Central Universities (20720150096, 20720170026, and
20720170024), and the Natural Science Foundation of Fujian
Province of China (No. 2017J05027).
30. S. Zhang, G. Fan and F. Li, Green Chem., 2013, 15, 2389.
31. S. Zhang, Q. Hu, G. Fan and F. Li, Catal. Commun., 2013, 39
,
96.
32. Q. Hu, G. Fan, S. Zhang, L. Yang and F. Li, J. Mol. Catal. A:
Chem., 2015, 397, 134.
33. A. Yin, X. Guo, W. Dai and K. Fan, J. Phys. Chem. C, 2009,
113, 11003.
Notes and references
1. J. Pritchard, G. A. Filonenko, R. van Putten, E. J. M.
Hensenab and E. A. Pidko, Chem. Soc. Rev., 2015, 44, 3808.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins