T. W. BENTLEY ET AL.
by a ratio of second order rate constants, S ¼ ka/kw)[9] may be
solvent-dependent. Addition of alcohol to water decreases the
rate of reaction due to a decrease in solvent ionising power
(Ingold rules:[10] the SN2 transition state is more polar than
the initial state of two neutral species). S decreases because the
nucleophilicity of water increases relative to alcohol (possible due
to a decrease in hydrogen bonding). Hence, the decrease in S as
alcohol is added to water is explained using kinetic rather than
thermodynamic concepts (such as activities, which do not
account for selectivities when the full range of alcohol–water
mixtures is examined).
[4] M. H. Abraham, M. J. Blandamer, J. Am. Chem. Soc. 2002, 124,
7853–7856.
[5] G. W. Neilson, P. E. Mason, S. Ramos, D. Sullivan, Phil. Trans. R. Soc.
Lond. (A) 2001, 359, 1575–1591.
[6] M. C. R. Symons, Phil. Trans. R. Soc. Lond. (A) 2001, 359, 1631–
1646.
[7] F. Franks (Ed.), Water, a Comprehensive Treatise, Plenum Press, New
York, 1979.
[8] M. C. R. Symons, Acc. Chem. Res. 1981, 14, 179–187.
[9] R. Ta-Shma, Z. Rappoport, Adv. Phys. Org. Chem. 1992, 27, 239–291.
[10] C. K. Ingold, Structure and Mechanism in Organic Chemistry, Cornell
University Press, Ithaca, New York, 1953, 346–350.
[11] F. L. Schadt, T. W. Bentley, Pv. R. Schleyer, J. Am. Chem. Soc. 1976, 98,
7667–7674.
[12] D. N. Kevill, H. Ren, J. Org. Chem. 1989, 54, 5654–5655.
[13] D. N. Kevill, M. J. D’Souza, H. Ren, Can. J. Chem. 1998, 76, 751–757.
[14] T. W. Bentley, K. Roberts, J. Chem. Soc. Perkin Trans. 2 1987, 293–299.
[15] T. W. Bentley, H. C. Harris, Z. H. Ryu, G. T. Lim, D. D. Sung, S. R. Szajda,
J. Org. Chem. 2005, 70, 8963–8970.
For second order solvolyses (e.g. of 2), initial attack by the
a rapid
solvent nucleophile (Scheme 1) is followed by
deprotonation step, and the kinetic isotope effect (KSIE) is low
(1.2).[41] For third order solvolyses (e.g. of 3 and 4), a second
molecule of solvent could act as a general base at the same time
as the nucleophilic attack, so the KSIE is larger (2.0).[15–18]
Logarithms of first order rate constants for solvolyses of 2 in MW
correlate linearly with YOTs, but the plots (Fig. 1) for 3 and 4 are
shallow curves.
[16] T. W. Bentley, R. O. Jones, J. Chem. Soc. Perkin Trans. 2 1993,
2351–2357.
[17] T. W. Bentley, R. O. Jones, I. S. Koo, J. Chem. Soc. Perkin Trans. 2 1994,
753–759.
[18] I. S. Koo, K. Yang, K. Kang, I. Lee, T. W. Bentley, J. Chem. Soc. Perkin
Trans. 2 1998, 1179–1183.
[19] F. A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, 4th edn.
Wiley, New York, 1980, 545.
[20] T. W. Bentley, I. S. Koo, S. J. Norman, J. Org. Chem. 1991, 56,
1604–1609.
EXPERIMENTAL
Materials
[21] H. Aronovitch, A. Pross, J. Chem. Soc. Perkin Trans. 2 1978, 540–545.
[22] M. Fujio, T. Susuki, M. Goto, Y. Tsuji, K. Yatsugi, S. H. Kim, G. A.-W.
Ahmed, Y. Tsuno, Bull. Chem. Soc. Jpn. 1995, 68, 673–682.
[23] I. Lee, H. J. Koh, Y. S. Park, H. W. Lee, J. Chem. Soc. Perkin Trans. 2 1993,
1575–1582.
[24] I. M. Gordon, H. Maskill, J. Chem. Soc. Perkin Trans. 2 2001, 2059–2062.
[25] M. Fujio, T. Susuki, M. Goto, Y. Tsuji, K. Yatsugi, Y. Saeki, S. H. Kim, Y.
Tsuno, Bull. Chem. Soc. Jpn. 1994, 67, 2233–2243.
[26] A. Thibblin, J. Org. Chem. 1993, 58, 7427–7433.
[27] J. B. Kyong, B.-C. Park, C.-B. Kim, D. N. Kevill, J. Org. Chem. 2000, 65,
8051–8058.
Benzyl chlorides were obtained from Aldrich; and purity was
checked by HPLC analysis of methanolysis products; 1, X ¼Cl,
Z ¼ H and Cl were distilled under reduced pressure prior to use.
4-Nitrobenzyl sulphonates were prepared from 4-nitrobenzyl
alcohol (Aldrich) by standard methods.[31] Solvents for solvolyses
and chromatography were as described previously.[15–18]
Solvolyses
[28] A. Queen, Can. J. Chem. 1979, 57, 2646–2651.
[29] T. L. Amyes, J. P. Richard, J. Am. Chem. Soc. 1990, 112, 9507–9512.
[30] T. W. Bentley, Z. H. Ryu, J. Chem. Soc. Perkin Trans. 2 1994, 761–767.
[31] P. Dietze, W. P. Jencks, J. Am. Chem. Soc. 1989, 111, 5880–5886.
[32] T. W. Bentley, H. C. Harris, I. S. Koo, J. Chem. Soc. Perkin Trans. 2 1988,
783–789.
Data for chlorides were obtained from solvolyses at 75 8C in 5 ml
sealed ampoules. Rate and product data for sulphonates were
obtained by injecting a 1% stock solution (10 ml) into 5 ml of
rapidly stirred, thermostated solvent.
[33] For a recent discussion of rate-product correlations see T. W. Bentley,
In The Investigation of Organic Reactions and Their Mechanisms (Ed.: H.
Maskill ) Blackwell, Oxford, 2006, Chapter 2.
[34] T. W. Bentley, G. Llewellyn, Prog. Phys. Org. Chem. 1990, 17, 121–158.
[35] J. Kaspi, Z. Rappoport, Tetrahedron Lett. 1977, 2035–2038.
[36] T. W. Bentley, G. E. Carter, K. Roberts, J. Org. Chem. 1984, 49,
5183–5189.
[37] A. R. Olson, R. S. Halford, J. Am. Chem. Soc. 1937, 59, 2644–2647.
[38] P. D. Bartlett, J. Am. Chem. Soc. 1939, 61, 1630–1635.
[39] S. Winstein, J. Am. Chem. Soc. 1939, 61, 1635–1640.
[40] D. N. Kevill, C.-B. Kim, Bull. Chem. Soc. France 1988, 383–390.
[41] J. M. W. Scott, Can. J. Chem. 2005, 83, 1667–1719.
[42] D. N. Kevill, In Advances in Quantitative Structure-Property Relation-
ships (Ed.: M. Charton ) Jai Press, Greenwich, CT, 1996, 1, 81–115.
[43] S. Minegishi, S. Kobayashi, H. Mayr, J. Am. Chem. Soc. 2004, 126,
5174–5181.
[44] T. W. Bentley, M. S. Garley, J. Phys. Org. Chem. 2006, 19, 341–349.
[45] P. R. Luton, M. C. Whiting, J. Chem. Soc. Perkin Trans. 2 1979, 646–647.
[46] R. C. Pemberton, C. J. Mash, J. Chem. Thermodynamics 1978, 10,
867–888.
Chromatography
Products of solvolyses of chlorides were analysed using a 5 mm
Spherisorb ODS2 chromatography column (15 cm  1/400); typical
conditions were: eluent (70% MW), flow rate (1 ml minÀ1), UV
detection (l ¼ 266 nm, A ¼ 0.5). A more polar eluent (55–60%
methanol) was required to separate the products for the tosylate.
Acknowledgements
We are grateful to L. M. Howle (now Pollaud) for preliminary
investigations of the benzyl chlorides, N. Asaad, J. R. Conder and
D. N. Kevill for helpful discussions, and EPSRC for equipment
grants.
REFERENCES
[47] K. Kurihara, T. Minoura, K. Takeda, K. Kojima, J. Chem. Eng. Data 1995,
40, 679–684.
[48] S. D. Christian, E. H. Lane, E. E. Tucker, J. Soln. Chem. 1981, 10,
181–188.
[49] L. Nord, E. E. Tucker, S. D. Christian, J. Soln. Chem. 1984, 13, 849–867.
[1] M. J. Blandamer, J. B. F. N. Engberts, P. T. Gleeson, J. C. R. Reis, Chem.
Soc. Rev. 2005, 34, 440–458.
[2] T. Rispens, C. Cabaleiro-Lago, J. B. F. N. Engberts, Org. Biomol. Chem.
2005, 3, 597–602.
[3] W. P. Jencks, Catalysis in Chemistry and Enzymology, McGraw Hill,
New York, 1969, 599–605.
Copyright ß 2008 John Wiley & Sons, Ltd.
J. Phys. Org. Chem. 2008, 21 251–256