Inorganic Chemistry
Article
Chem. Soc. 2001, 123, 6708−6709. (c) Battaini, G.; Carolis, M. D.;
Monzani, E.; Tuczek, F.; Casella, L. Chem. Commun. 2003, 726−727.
(d) Palavicini, S.; Granata, A.; Monzani, E.; Casella, L. J. Am. Chem.
Soc. 2005, 127, 18031−18036. (e) Rolff, M.; Schottenheim, J.; Peters,
G.; Tuczek, F. Angew. Chem., Int. Ed. 2010, 49, 6438−6442. (f) Citek,
C.; Lyons, C. T.; Wasinger, E. C.; Stack, T. D. P. Nat. Chem. 2012, 4,
317−322. (g) Matsumoto, J.; Kajita, Y.; Masuda, H. Eur. J. Inorg. Chem.
2012, 2012, 4149−4158. (h) Hoffmann, A.; Citek, C.; Binder, S.;
Funding
Financial support was provided by the Natural Sciences and
Engineering Council of Canada, the Fonds de Recherche du
Quebec−Nature et Technologies and the Centre de Chimie
́
Verte et Catalyse (Quebec).
Notes
The authors declare no competing financial interest.
́ ́
Goos, A.; Rubhausen, M.; Troeppner, O.; Ivanovic-Burmazovic, I.;
̈
Wasinger, E. C.; Stack, T. D. P.; Herres-Pawlis, S. Angew. Chem., Int.
Ed. 2013, 52, 5398−5401.
ACKNOWLEDGMENTS
■
We are grateful to Prof. Hein Schaper and Prof. Garry Hanan
(Universite
(11) For examples of phenolate oxygenations by well-characterized
Cu−O2 complexes other than P, see: (a) Company, A.; Palavicini, S.;
́
de Montrea
́
l) for access to their cryo-stopped-flow
and glovebox equipment. M.S.A. acknowledges NSERC for a
PGS-D scholarship.
́
Garcia-Bosch, I.; Mas-Balleste, R.; Que, L.; Rybak-Akimova, E. V.;
Casella, L.; Ribas, X.; Costas, M. Chem. - Eur. J. 2008, 14, 3535−3538.
(b) Herres-Pawlis, S.; Verma, P.; Haase, R.; Kang, P.; Lyons, C. T.;
REFERENCES
Wasinger, E. C.; Florke, U.; Henkel, G.; Stack, T. D. P. J. Am. Chem.
̈
■
Soc. 2009, 131, 1154−1169. (c) Garcia-Bosch, I.; Company, A.; Frisch,
(1) (a) Punniyamurthy, T.; Velusamy, S.; Iqbal, J. Chem. Rev. 2005,
105, 2329−2364. (b) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.;
Kozlowski, M. C. Chem. Rev. 2013, 113, 6234−6458. (c) Wendlandt,
A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem., Int. Ed. 2011, 50, 11062−
11087. (d) Que, L.; Tolman, W. B. Nature 2008, 455, 333−340.
J. R.; Torrent-Sucarrat, M.; Cardellach, M.; Gamba, I.; Guell, M.;
̈
Casella, L.; Que, L.; Ribas, X.; Luis, J. M.; Costas, M. Angew. Chem.,
Int. Ed. 2010, 49, 2406−2409. (d) Mandal, S.; Mukherjee, J.; Lloret, F.;
Mukherjee, R. Inorg. Chem. 2012, 51, 13148−13161. (e) Garcia-Bosch,
I.; Ribas, X.; Costas, M. Chem. - Eur. J. 2012, 18, 2113−2122.
(f) Serrano-Plana, J.; Garcia-Bosch, I.; Company, A.; Costas, M. Acc.
Chem. Res. 2015, 48, 2397−2406.
(e) Piera, J.; Backvall, J.-E. Angew. Chem., Int. Ed. 2008, 47, 3506−
3523.
̈
(2) (a) Yamamura, S. The Chemistry of Phenols; John Wiley & Sons,
́
Ltd.: West Sussex, U.K., 2003. (b) Quideau, S.; Deffieux, D.; Pouysegu,
L. Comprehensive Organic Synthesis II, 2nd ed.; Elsevier: Amsterdam,
2014.
(12) For other examples of Cu-based phenolate oxygenations, see:
(a) Capdevielle, P.; Maumy, M. Tetrahedron Lett. 1982, 23, 1577−
1580. (b) Casella, L.; Gullotti, M.; Radaelli, R.; Di Gennaro, P. J.
Chem. Soc., Chem. Commun. 1991, 1611−1612. (c) Casella, L.;
Monzani, E.; Gullotti, M.; Cavagnino, D.; Cerina, G.; Santagostini, L.;
Ugo, R. Inorg. Chem. 1996, 35, 7516−7525. (d) Monzani, E.; Quinti,
L.; Perotti, A.; Casella, L.; Gullotti, M.; Randaccio, L.; Geremia, S.;
Nardin, G.; Faleschini, P.; Tabbì, G. Inorg. Chem. 1998, 37, 553−562.
(e) Cheng, Y.-T.; Chen, H.-L.; Tsai, S.-Y.; Su, C.-C.; Tsang, H.-S.;
Kuo, T.-S.; Tsai, Y.-C.; Liao, F.-L.; Wang, S.-L. Eur. J. Inorg. Chem.
2004, 2004, 2180−2188.
(13) (a) Itoh, S.; Fukuzumi, S. Acc. Chem. Res. 2007, 40, 592−600.
(b) Osako, T.; Ohkubo, K.; Taki, M.; Tachi, Y.; Fukuzumi, S.; Itoh, S.
J. Am. Chem. Soc. 2003, 125, 11027−11033. (c) Paul, P. P.; Tyeklar, Z.;
Jacobson, R. R.; Karlin, K. D. J. Am. Chem. Soc. 1991, 113, 5322−5332.
(d) Kitajima, N.; Koda, T.; Iwata, Y.; Morooka, Y. J. Am. Chem. Soc.
1990, 112, 8833−8839. (e) Obias, H. V.; Lin, Y.; Murthy, N. N.;
Pidcock, E.; Solomon, E. I.; Ralle, M.; Blackburn, N. J.; Neuhold, Y.-
(3) (a) Hay, A. S.; Blanchard, H. S.; Endres, G. F.; Eustance, J. W. J.
Am. Chem. Soc. 1959, 81, 6335−6336. (b) Endres, G. F.; Hay, A. S.;
Eustance, J. W. J. Org. Chem. 1963, 28, 1300−1305. (c) Hay, A. S.
Polym. Eng. Sci. 1976, 16, 1−10. (d) Lee, Y. E.; Cao, T.; Torruellas, C.;
Kozlowski, M. C. J. Am. Chem. Soc. 2014, 136, 6782−6785.
(4) (a) Esguerra, K. V. N.; Fall, Y.; Lumb, J.-P. Angew. Chem., Int. Ed.
2014, 53, 5877−5881. (b) Esguerra, K. V. N.; Fall, Y.; Petitjean, L.;
Lumb, J.-P. J. Am. Chem. Soc. 2014, 136, 7662−7668. (c) Askari, M. S.;
Rodriguez-Solano, L. A.; Proppe, A.; McAllister, B.; Lumb, J. P.;
Ottenwaelder, X. Dalton Trans. 2015, 44, 12094−12097.
(5) (a) Pouyseg
2235−2261. (b) Quideau, S.; Deffieux, D.; Douat-Casassus, C.;
Pouysegu, L. Angew. Chem., Int. Ed. 2011, 50, 586−621. (c) Pouysegu,
́
u, L.; Deffieux, D.; Quideau, S. Tetrahedron 2010, 66,
́
́
L.; Sylla, T.; Garnier, T.; Rojas, L. B.; Charris, J.; Deffieux, D.;
Quideau, S. Tetrahedron 2010, 66, 5908−5917. (d) Roche, S. P.;
Porco, J. A. Angew. Chem., Int. Ed. 2011, 50, 4068−4093. (e) Magdziak,
D.; Rodriguez, A. A.; Van De Water, R. W.; Pettus, T. R. R. Org. Lett.
2002, 4, 285−288. (f) Uyanik, M.; Mutsuga, T.; Ishihara, K. Molecules
2012, 17, 8604−8616.
M.; Zuberbuhler, A. D.; Karlin, K. D. J. Am. Chem. Soc. 1998, 120,
̈
12960−12961. (f) Halfen, J. A.; Young, V. G.; Tolman, W. B. Inorg.
Chem. 1998, 37, 2102−2103.
(14) Hamann, J. N.; Rolff, M.; Tuczek, F. Dalton Trans. 2015, 44,
3251−3258.
(6) (a) Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem.
Rev. 1996, 96, 2563−2606. (b) Decker, H.; Schweikardt, T.; Tuczek,
F. Angew. Chem., Int. Ed. 2006, 45, 4546−4550. (c) Fairhead, M.;
(15) Kobayashi, S.; Higashimura, H. Prog. Polym. Sci. 2003, 28,
1015−1048.
Thony-Meyer, L. New Biotechnol. 2012, 29, 183−191. (d) Solomon, E.
̈
(16) (a) Matoba, Y.; Kumagai, T.; Yamamoto, A.; Yoshitsu, H.;
Sugiyama, M. J. Biol. Chem. 2006, 281, 8981−8990. (b) Solomon, E. I.;
Ginsbach, J. W.; Heppner, D. E.; Kieber-Emmons, M. T.; Kjaergaard,
C. H.; Smeets, P. J.; Tian, L.; Woertink, J. S. Faraday Discuss. 2011,
148, 11−39. (c) Goldfeder, M.; Kanteev, M.; Isaschar-Ovdat, S.; Adir,
N.; Fishman, A. Nat. Commun. 2014, 5, 4505.
I.; Heppner, D. E.; Johnston, E. M.; Ginsbach, J. W.; Cirera, J.;
Qayyum, M.; Kieber-Emmons, M. T.; Kjaergaard, C. H.; Hadt, R. G.;
Tian, L. Chem. Rev. 2014, 114, 3659−3853.
(7) (a) Rolff, M.; Schottenheim, J.; Decker, H.; Tuczek, F. Chem. Soc.
Rev. 2011, 40, 4077−4098. (b) Hatcher, L. Q.; Karlin, K. D. Adv. Inorg.
Chem. 2006, 58, 131−184.
́
(17) (a) Reglier, M.; Jorand, C.; Waegell, B. J. Chem. Soc., Chem.
(8) (a) Mirica, L. M.; Ottenwaelder, X.; Stack, T. D. P. Chem. Rev.
2004, 104, 1013−1046. (b) Lewis, E. A.; Tolman, W. B. Chem. Rev.
2004, 104, 1047−1076. (c) Citek, C.; Herres-Pawlis, S.; Stack, T. D. P.
Acc. Chem. Res. 2015, 48, 2424.
Commun. 1990, 1752−1755. (b) Schottenheim, J.; Fateeva, N.;
Thimm, W.; Krahmer, J.; Tuczek, F. Z. Anorg. Allg. Chem. 2013, 639,
1491−1497. (c) Hamann, J. N.; Tuczek, F. Chem. Commun. 2014, 50,
2298−2300. (d) Wilfer, C.; Liebhauser, P.; Erdmann, H.; Hoffmann,
̈
(9) (a) Mirica, L. M.; Vance, M.; Rudd, D. J.; Hedman, B.; Hodgson,
K. O.; Solomon, E. I.; Stack, T. D. P. Science 2005, 308, 1890−1892.
(b) Op’t Holt, B. T.; Vance, M. A.; Mirica, L. M.; Heppner, D. E.;
Stack, T. D. P.; Solomon, E. I. J. Am. Chem. Soc. 2009, 131, 6421−
6438.
(10) (a) Santagostini, L.; Gullotti, M.; Monzani, E.; Casella, L.;
Dillinger, R.; Tuczek, F. Chem. - Eur. J. 2000, 6, 519−522. (b) Itoh, S.;
Kumei, H.; Taki, M.; Nagatomo, S.; Kitagawa, T.; Fukuzumi, S. J. Am.
A.; Herres-Pawlis, S. Eur. J. Inorg. Chem. 2015, 2015, 494−502.
(e) Arnold, A.; Metzinger, R.; Limberg, C. Chem. - Eur. J. 2015, 21,
1198−1207. (f) Schottenheim, J.; Gernert, C.; Herzigkeit, B.;
Krahmer, J.; Tuczek, F. Eur. J. Inorg. Chem. 2015, 2015, 3501−3511.
(18) (a) Mirica, L. M.; Vance, M.; Rudd, D. J.; Hedman, B.;
Hodgson, K. O.; Solomon, E. I.; Stack, T. D. P. J. Am. Chem. Soc. 2002,
124, 9332−9333. (b) Mirica, L. M.; Rudd, D. J.; Vance, M. A.;
G
Inorg. Chem. XXXX, XXX, XXX−XXX