ChemComm
Communication
over that of the ketones. More detailed experiments to clarify the
origin of the selectivities are now under investigation in our lab.
In summary, a monolayer of diisocyanide on gold surface
was utilized to immobilize catalytically active Rh species on
the top of the monolayer. IR-RAS and ICP-MS analyses of the
Rh-immobilized surface confirmed the formation of a high-
density monolayer of Rh–diisocyanide. The Rh-immobilized
monolayer exhibited extremely high catalyst turnover numbers
and uniquely high 1,4-selectivity for hydrogenation reaction of
various a,b-unsaturated carbonyl compounds with high recycl-
ability. It can be noted that the catalyst preparation in the
present approach using high-density monolayer of metal com-
plexes has unique features against the conventional heterogeneous
and homogeneous catalyst systems. Further applications based on
the present approach by using simple wet processes are expected
to show its versatile significance in various catalytic reactions.
Prof. T. Kawaguchi and Prof. K. Shimazu are gratefully
acknowledged for preparation of gold surfaces, Prof. T. Watanabe
is acknowledged for ICP-MS measurement and Mr K. Namba for
experimental help. This work was financially supported by the
Asahi Glass Foundation, JSPS KAKENHI Grant Numbers
23105503, 25105703 and the Global COE Program (Project
No. B01: Catalysis as the Basis for Innovation in Materials
Science) from MEXT, Japan.
Fig. 3 Catalyst turnover numbers (TON) in recycled uses of [Au]–TPDI–Rh (2)
in hydrogenation of 2-cyclohexen-1-one. Reaction conditions: 2-cyclohexene-
1-one 30 mmol, 2-cyclohexene-1-one/Rh = 180 000, EtOH 120 mL, H2 2 MPa,
25 1C, 12 h.
Table 2 Hydrogenation of various a,b-unsaturated carbonyl compounds
using [Au]–TPDI–Rh (2)a
Yield 1,4-Selectivity
Entry Reactant
Product
(%)
(%)
1
77
97
Notes and references
2
3
4
5
6
78
71
81
98
99
499.5
499.5
499.5
499.5
499.5
¨
1 K. Tollner, R. Popovitz-Biro, M. Lahav and D. Milstein, Science, 1997,
278, 2100.
´
2 I. O. Benıtez, B. Bujoli, L. J. Camus, C. M. Lee, F. Odobel and D. R.
Talham, J. Am. Chem. Soc., 2002, 124, 4363; A. Pasc-Banu, C. Sugisaki,
T. Gharsa, J.-D. Marty, I. Gascon, G. Pozzi, S. Quici, I. Rico-Lattes and
C. Mingotaud, Angew. Chem., Int. Ed., 2004, 43, 6174; M. Bartz,
J. Ku¨ther, R. Seshadri and W. Tremel, Angew. Chem., Int. Ed., 1998,
37, 2466; K. Marubayashi, S. Takizawa, T. Kawakusu, T. Arai and
H. Sasai, Org. Lett., 2003, 5, 4409.
3 K. Hara, R. Akiyama, S. Takakusagi, K. Uosaki, T. Yoshino, H. Kagi
and M. Sawamura, Angew. Chem., Int. Ed., 2008, 47, 5627.
4 A. Ulman, Chem. Rev., 1996, 96, 1533; A. Ulman, Thin Films: Self-
Assembled Monolayers of Thiols, Academic Press, San Diego, CA, 1998;
S. Flink, F. C. J. M. van Veggel and D. N. Reinhoudt, Adv. Mater., 2000,
12, 1315; J. J. Gooding, F. Mearns, W. Yang and J. Liu, Electroanalysis,
2003, 15, 81; J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo and
G. M. Whitesides, Chem. Rev., 2005, 105, 1103.
5 J. I. Henderson, S. Feng, T. Bein and C. P. Kubiak, Langmuir, 2000,
16, 6183; S. A. Swanson, R. McClain, K. S. Lovejoy, N. B. Alamdari,
J. S. Hamilton and J. C. Scott, Langmuir, 2005, 21, 5034.
7b
65
98
6 J. A. Boscoboinik, F. C. Calaza, Z. Habeeb, D. W. Bennett, D. J. Stacchiola,
M. A. Purino and W. T. Tysoe, Phys. Chem. Chem. Phys., 2010, 12, 11624;
J. Boscoboinik, J. Kestell, M. Garvey, M. Weinert and W. T. Tysoe, Top. Catal.,
2011, 54, 20; K. Ikeda, N. Fujimoto, H. Uehara and K. Uosaki, Chem. Phys.
Lett., 2008, 460, 205; K. Ikeda, J. Sato, N. Fujimoto, N. Hayazawa, S. Kawata
and K. Uosaki, J. Phys. Chem. C, 2009, 113, 11816; M. Ito, H. Noguchi,
K. Ikeda and K. Uosaki, Phys. Chem. Chem. Phys., 2010, 12, 3156.
7 V. Huc, J.-P. Bourgoin, C. Bureau, F. Valin, G. Zalczer and S. Palacin,
J. Phys. Chem. B, 1999, 103, 10489.
8 F. H. Jardine and G. Wilkinson, J. Chem. Soc. C, 1967, 270; J. Tsuji and
K. Ohno, Tetrahedron Lett., 1967, 8, 2173; J. Tsuji and K. Ohno, Synthesis,
1969, 157; V. V. Grushin and H. Alper, Organometallics, 1991, 10, 831.
9 Preliminary XPS results showed the formation of Rh(0) species by a
hydrogenation reaction in hexane, which is most probably the reason
for lower catalyst turnover number.
a
Reaction conditions: a,b-unsaturated carbonyl compound 30 mmol,
b
substrate/Rh = 180 000, EtOH 120 mL, H2 2 MPa, 25 1C, 12 h. Citral
15 mmol.
yields (entries 1–6). Citral can also be converted to 1,4-hydrogenated
product, citronellal, in 65% yield with 98% 1,4-selectivity
(entry 7).
The high selectivities obtained by using [Au]–TPDI–Rh (2)
might be associated with preferred adsorption and/or coordina-
tion interaction of the starting enones with the catalyst surface
5048 | Chem. Commun., 2014, 50, 5046--5048
This journal is ©The Royal Society of Chemistry 2014