Journal of the American Chemical Society
Article
(
(
37) For biomimetic syntheses see refs 15−21 and 24−30.
4582. Reisolation: (c) Wratten, S. J.; Faulkner, D. J. Metabolites of
the red alga Laurencia subopposita. J. Org. Chem. 1977, 42, 3343−
3349. Previous synthesis see refs 24 and 28.
(49) For isolation and structure determination of acetyllaurefucin
see refs 48a−c.
38) For selected recent non-biomimetic syntheses see: (a) Kim, B.;
Sohn, T. I.; Kim, S.; Kim, D.; Lee, J. Concise Substrate-Controlled
Asymmetric Total Synthesis of (+)-3-(Z)-Dihydrorhodophytin.
Heterocycles 2010, 82, 1113−1118. (b) Kim, M. J.; Sohn, T. I.;
Kim, D.; Paton, R. S. Concise substrate-controlled asymmetric total
syntheses of dioxabicyclic marine natural products with 2,10-
dioxabicyclo-[7.3.0]dodecene and 2,9-dioxabicyclo[6.3.0]undecene
skeletons. J. Am. Chem. Soc. 2012, 134, 20178−20188. (c) Sohn, T.
I.; Kim, D.; Paton, R. S. Substrate-Controlled Asymmetric Total
Syntheses of Microcladallenes A, B, and C Based on the Proposed
Structures. Chem. - Eur. J. 2015, 21, 15988−15997. (d) Yoshimura, F.;
Okada, T.; Tanino, K. Asymmetric Total Synthesis of Laurallene. Org.
Lett. 2019, 21, 559−562. Ref 27.
(50) Bromofucins. Isolation: (a) Coll, J. C.; Wright, A. D. Tropical
Marine-Algae. IV. Novel Metabolites from the Red Alga Laurencia
implicata (Rhodophyta, Rhodophyceae, Ceramiales, Rhodomelaceae).
Aust. J. Chem. 1989, 42, 1685−1693. (b) McPhail, K. L.; Davies-
Coleman, M. T. (3Z)-bromofucin from a South African sea hare. Nat.
Prod. Res. 2005, 19, 449−452. (c) Suzuki, M.; Takahashi, Y.; Matsuo,
Y.; Masuda, M. Pannosallene, a brominated C-15 nonterpenoid from
Laurencia pannosa. Phytochemistry 1996, 41, 1101−1103. Synthesis:
ref 25.
(51) Chlorofucins. Isolation: (a) Howard, B. M.; Schulte, G. R.;
Fenical, W.; Solheim, B.; Clardy, J. Three new vinyl acetylenes from
the marine red alga. Tetrahedron 1980, 36, 1747−1751. (b) Denys, R.;
Coll, J. C.; Carroll, A. R.; Bowden, B. F. Tropical marine-algae. X.
Isolaurefucin methyl-ether, a new lauroxocane derivative from the red
alga Dasyphila-Plumariodes. Aust. J. Chem. 1993, 46, 1073−1077.
(c) Suzuki, M.; Daitoh, M.; Vairappan, C. S.; Abe, T.; Masuda, M.
Novel halogenated metabolites from the Malaysian Laurencia pannosa.
J. Nat. Prod. 2001, 64, 597−602. Synthesis: ref 25.
(52) Elatenynes. Isolation and structure determination: (a) Hall, J.
G.; Reiss, J. A. Elatenyne − a Pyrano[3,2-b]pyranyl Vinyl Acetylene
from the Red Alga. Aust. J. Chem. 1986, 39, 1401−1409. (b) Kim, I.
K.; Brennan, M. R.; Erickson, K. L. Lauroxolanes from the marins alga
Laurencia Majuscula. Tetrahedron Lett. 1989, 30, 1757−1760.
(c) Sheldrake, H. M.; Jamieson, C.; Burton, J. W. The changing
faces of halogenated marine natural products: Total synthesis of the
reported structures of elatenyne and an enyne from Laurencia
majuscula. Angew. Chem., Int. Ed. 2006, 45, 7199−7202. (d) Smith, S.
G.; Paton, R. S.; Burton, J. W.; Goodman, J. M. Stereostructure
assignment of flexible five-membered rings by GIAO (13)C NMR
calculations: Prediction of the stereochemistry of elatenyne. J. Org.
Chem. 2008, 73, 4053−4062. (e) Dias, D. A.; Urban, S.
Phytochemical studies of the southern Australian marine alga,
Laurencia elata. Phytochemistry 2011, 72, 2081−2089. Ref 17.
(f) Urban, S.; Brkljaca, R.; Hoshino, M.; Lee, S.; Fujita, M.
Determination of the Absolute Configuration of the Pseudo-
Symmetric Natural Product Elatenyne by the Crystalline Sponge
Method. Angew. Chem., Int. Ed. 2016, 55, 2678−2682. Synthesis: ref
20.
(
39) For earlier notable contributions to the synthesis of
halogenated ether acetogenins from Laurencia spp. see: (a) Overman,
L. E.; Thompson, A. S. Total synthesis of (−)-laurenyne. Use of
acetal-initiated cyclizations to prepare functionalized eight-membered
cyclic ethers. J. Am. Chem. Soc. 1988, 110, 2248−2256. (b) Tsushima,
K.; Murai, A. Total synthesis of (+)-laurencin. Tetrahedron Lett. 1992,
3
3, 4345−4348. (c) Lee, E.; Park, C. M.; Yun, J. S. Total Synthesis of
Dactomelynes. J. Am. Chem. Soc. 1995, 117, 8017−8018. (d) Burton,
J. W.; Clark, J. S.; Derrer, S.; Stork, T. C.; Bendall, J. G.; Holmes, A. B.
Synthesis of medium ring ethers. 5. The synthesis of (+)-laurencin. J.
Am. Chem. Soc. 1997, 119, 7483−7498. (e) Crimmins, M. T.; Choy,
A. L. An Asymmetric Aldol-Ring-Closing Metathesis Strategy for the
Enantioselective Construction of Oxygen Heterocycles: An Efficient
Approach to the Enantioselective Synthesis of (+)-Laurencin. J. Am.
Chem. Soc. 1999, 121, 5653−5660. (f) Fujiwara, K.; Awakura, D.;
Tsunashima, M.; Nakamura, A.; Honma, T.; Murai, A. Total Synthesis
of (+)-Obtusenyne. J. Org. Chem. 1999, 64, 2616−2617. (g) Kim, H.;
Choi, W. J.; Jung, J.; Kim, S.; Kim, D. Construction of eight-
membered ether rings by olefin geometry-dependent internal
alkylation: First asymmetric total syntheses of (+)-3-(E)- and (+)-3-
(
E)-pinnatifidenyne. J. Am. Chem. Soc. 2003, 125, 10238−10240.
40) Fukuzawa, A.; Aye, M.; Murai, A. A Direct Enzymatic Synthesis
of Laurencin from Laurediol. Chem. Lett. 1990, 19, 1579−1580.
41) Kurosawa, E.; Irie, T.; Fukuzawa, A. trans-Laurediol and cis-
(
(
laurediol, unsaturated glycols from Laurencia Nipponica yamada.
Tetrahedron Lett. 1972, 13, 2121−2124.
(
42) Fukuzawa, A.; Honma, T.; Takasugi, Y.; Murai, A. Biogenetic
intermediates, (3E and 3Z,12Z)-laurediols and (3E and 3Z)-12,13-
dihydrolaurediols, isolated from Laurencia Nipponica. Phytochemistry
1
(
993, 32, 1435−1438.
(53) Laurendecumenyne B. Isolation and structure determination:
(a) Ji, N. Y.; Li, X. M.; Li, K.; Wang, B. G. Laurendecumallenes A-B
and laurendecumenynes A-B, halogenated nonterpenoid C-15-
Acetogenins from the marine red alga Laurencia decumbens. J. Nat.
Prod. 2007, 70, 1499−1502. (b) Ji, N. Y.; Li, X. M.; Li, K.; Wang, B.
G. J. Nat. Prod. 2007, 70, 1499; J. Nat. Prod. 2010, 73, 1192. (c) Ref
20. Synthesis ref 20.
43) For reviews of halogenating enzymes see: (a) Butler, A.; Carter-
Franklin, J. N. The role of vanadium bromoperoxidase in the
biosynthesis of halogenated marine natural products. Nat. Prod. Rep.
2
004, 21, 180−188. (b) Vaillancourt, F. H.; Yeh, E.; Vosburg, D. A.;
Garneau-Tsodikova, S.; Walsh, C. T. Nature’s inventory of
halogenation catalysts: Oxidative strategies predominate. Chem. Rev.
2
(
006, 106, 3364−3378.
(54) Schulte, G. R.; Chung, M. C. H.; Scheuer, P. J. Two bicyclic
C15 enynes from the sea hare Aplysia oculifera. J. Org. Chem. 1981, 46,
3870−3873.
44) Kaneko, K.; Washio, K.; Umezawa, T.; Matsuda, F.; Morikawa,
M.; Okino, T. cDNA cloning and characterization of vanadium-
dependent bromoperoxidases from the red alga Laurencia nipponica.
Biosci., Biotechnol., Biochem. 2014, 78, 1310−1319.
(55) Jeong, D.; Sohn, T. I.; Kim, J. Y.; Kim, G.; Kim, D.; Paton, R. S.
Construction of 6,10-syn- and -anti-2,5-dioxabicyclo[2.2.1]heptane
skeletons via oxonium ion formation/fragmentation: prediction of
structure of (E)-ocellenyne by NMR calculation. Org. Lett. 2017, 19,
6252−6255.
(
45) Davies, S. G.; Polywka, M. E. C.; Thomas, S. E. Stereoselective
synthesis of cyclic ethers via bromine assisted epoxide ring expansion.
Tetrahedron Lett. 1985, 26, 1461−1464.
(
46) Suzuki proposed a different route from laurediol to
(56) Olah, G. A.; Laali, K. K.; Wang, Q.; Prakash, G. K. S. Onium
Ions; Wiley: New York, 1998.
prelaurefucin; see ref 12.
47) For previous syntheses of notoryne see: Senapati, S.; Das, S.;
Ramana, C. V. Total Synthesis of Notoryne. J. Org. Chem. 2018, 83,
2863−12868 and ref 27 .
48) Laurefucin. Isolation and structure determination: (a) Fukuza-
(
(57) Krossing, I. The facile preparation of weakly coordinating
anions: structure and characterisation of silverpolyfluoroalkoxyalumi-
nates AgAl(OR ) , calculation of the alkoxide ion affinity. Chem. - Eur.
1
(
F
4
J. 2001, 7, 490−502.
wa, A.; Kurosawa, E.; Irie, T. Laurefucin and acetyllaurefucin, new
bromo compounds from Laurencia Nipponica yamada. Tetrahedron
Lett. 1972, 13, 3−6. (b) Furusaki, A.; Kurosawa, E.; Fukuzawa, A.;
Irie, T. The revised structure and absolute configuration of Laurefucin
from Laurencia Nipponica Yamada. Tetrahedron Lett. 1973, 14, 4579−
(58) Braddock, D. C.; Hermitage, S. A.; Kwok, L.; Pouwer, R.;
Redmond, J. M.; White, A. J. The generation and trapping of
enantiopure bromonium ions. Chem. Commun. 2009, 1082−1084.
(59) The relative configuration of the dioxabicyclo[5.2.1]decanes
28, ent-(E/Z)-29, ent-15, ent-(Z)-16, (E/Z)-19, (E/Z)-24 and the
K
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX