A. Armstrong, H. Chung / Tetrahedron Letters 47 (2006) 1617–1619
1619
To a solution of 2-alkoxydihydropyran 3d (191 mg,
0.9 mmol) in CH2Cl2 (10 mL) under nitrogen was added
DMDO/acetone solution (20 mL of 0.045 M, 0.9 mmol).
The mixture was stirred for 30 min at 0 ꢁC followed by 3 h
at room temperature, then washed with saturated aqueous
NaHCO3 solution and evaporated to give a mixture of
lactol 5d and lactol ether 4d. This mixture was dissolved in
acetone (10 mL) at 0 ꢁC and Jones reagent (0.9 mL of
3.0 M, 2.7 mmol) was added dropwise. After stirring for
3 h, the excess of oxidant was quenched by the dropwise
addition of 2-propanol until the brown colour of the
mixture turned green. The reaction mixture was diluted
with diethyl ether and the precipitated chromium salts
were dissolved by the addition of saturated aqueous
NH4Cl solution. The organic layer was separated and the
aqueous layer was extracted with diethyl ether. The
combined organics were dried (MgSO4) and evaporated.
Column chromatography (1:1 EtOAc/petrol) afforded
lactone 6d (96 mg, 63% over two steps from 3d) as a
colourless oil and as an inseparable 9:1 mixture of
diastereoisomers by 1H NMR, mmax/cmÀ1 2965, 2933,
2879, 1787, 1720, 1644; dH (250 MHz, CDCl3) 4.88
(1Hmajor, d, J 7.1 Hz, OCH), 4.56 (1Hminor, d, J 4.9 Hz,
OCH) 2.64–2.34 (3H, m, COCH2, CH), 2.29 (3Hmajor, s,
CH3), 2.26 (3Hminor, s, CH3), 1.90 (1Hminor, m, CHCH3),
1.68 (1Hmajor, m, CHCH3), 0.99 (3Hmajor, d, J 6.6 Hz,
CHCH3), 0.96 (3Hminor, d, J 2.1 Hz, CHCH3), 0.94
(3Hminor, d, J 2.1 Hz, CHCH3), 0.87 (3Hmajor, d, J
6.7 Hz, CHCH3); dC (125 MHz, CDCl3) resonances for
major isomer: 205.7 (CH3CO), 175.4 (OCO), 84.3 (CH),
metric Diels–Alder or epoxidation processes are under-
way in our labs.
Acknowledgements
We thank Bristol-Myers Squibb, Merck Sharp and
Dohme and Pfizer for unrestricted support of our
research programme.
References and notes
1. Armstrong, A.; Cumming, G. R.; Pike, K. Chem. Com-
mun. 2004, 812–813.
2. Armstrong, A.; Shanahan, S. E. Org. Lett. 2005, 7, 1335–
1338.
3. (a) Ireland, R. E.; Ha¨bich, D. Chem. Ber. 1981, 114, 1418–
1427; (b) Ireland, R. E.; Ha¨bich, D. Tetrahedron Lett.
1981, 21, 1389–1392; (c) McRae, K. J.; Rizzacasa, M. A. J.
Org. Chem. 1997, 62, 1196–1197.
4. Chernoff, H. C.; Hall, S. S. Chem. Ind. 1970, 896–897.
5. Reviews of THF synthesis: (a) Boivin, T. L. B. Tetra-
hedron 1987, 43, 3309–3362; (b) Figadere, B.; Harmange,
J. Tetrahedron: Asymmetry 1993, 4, 1711–1754; (c) Urich,
K. Synthesis 1995, 115–132; Examples dealing with 2,3-
disubstituted THFs: (a) Burke, S. D.; Jung, K. W.
Tetrahedron Lett. 1994, 35, 5837–5840; (b) Hartung, J.;
Schmidt, P. Synlett 2000, 367–370; (c) Judka, M.;
Ma˛kosza, M. Chem. Eur. J. 2002, 8, 4234–4240; (d)
Sutterer, A.; Moller, K. D. J. Am. Chem. Soc. 2000, 122,
5636–5637; (e) Guidon, Y.; Labelle, M. J. Am. Chem. Soc.
1989, 111, 2204–2210.
6. (a) Danishefsky, S.; Bednarsky, M. J. Am. Chem. Soc.
1983, 105, 3716–3717; (b) Danishefsky, S.; Bednarsky, M.
Tetrahedron Lett. 1984, 7, 721–724.
7. Solutions of DMDO in acetone (ca. 0.05 M; titrated
against iodine before use) prepared according to the
procedures in: (a) Burke, S. D.; Danheiser, R. L. Oxidizing
and Reducing Agents. In Handbook of Reagents for
Organic Synthesis; Wiley: New York, 1999; Vol. 2, pp
149–152; (b) Adam, W.; Bialas, J.; Hadjiarapoglou, L.
Chem. Ber. 1991, 124, 2377–2378.
46.4 (CH2), 31.3 (CH), 29.1 (CH), 27.6 (CH3), 21.4, 20.0
+
(CH3); m/z (CI) 188 (MNH4+, 100%); Found: MNH4
,
188.1289. C9H14O3 requires: MNH4+, 188.1287.
10. (a) Conner, J. M.; Paterson, A.; Piggott, J. R. J. Sci. Food
Agric. 1993, 62, 169–174; (b) Lee, K. Y. M.; Paterson, A.;
Piggott, J. R. J. Inst. Brew. 2000, 106, 203–208; (c) Ebata,
T.; Matsumoto, K.; Yoshikoshi, H. Heterocycles 1993, 36,
1017–1026; (d) Kepner, R. E.; Webb, A. D.; Muller, C. J.
Am. J. Enol. Viticult. 1972, 23, 103–105; (e) Otsuka, K.;
Zenibayashi, Y.; Itoh, M.; Totsuka, A. Agric. Biol. Chem.
1974, 38, 485–490; (f) Pollnitz, A. P.; Jones, G. P.; Sefton,
M. A. J. Chromatogr. A 1999, 857, 239–246.
11. Data for 13: 1H NMR (250 MHz, CDCl3) 4.44 (1H, dd, J
5.8, 4.5 Hz, OCH), 2.66 (1H, dd,
J 17.0, 8.0 Hz,
8. Expected key NOE interactions between the substituents
at C4 and C5 were observed in the major isomers.
9. Typical procedure for oxidative rearrangement: synthesis
of lactone 6d. To n-butyl vinyl ether (6.0 mL, 47 mmol)
were added methyl vinyl ketone (3.1 mL, 24 mmol) and
Yb(fod)3 (1.0 g, 0.94 mmol). After heating in a pressure
tube at 55 ꢁC for 3 days, the solution was purified
by column chromatography (5:95 ether/petrol) to give
dihydropyran 3d (3.8 g, 75%) as a 6:1 inseparable mixture
of diastereoisomers and as a pale yellow oil, mmax/cmÀ1
2958, 2873, 1721, 1678; dH (250 MHz, CDCl3) peaks for
major isomer: 4.84 (1H, dd, J 9.4, 2.1 Hz, OCHO), 4.36
(1H, d, J 0.7 Hz, CCH), 3.90 (1H, dt, J 9.5, 6.6 Hz,
OCH2), 3.47 (1H, dt, J 9.5, 6.7 Hz, OCH2), 2.08 (1H, dqq,
J 12.3, 4.1, 2.1 Hz, CCH), 1.86 (1H, ddt, J 12.6, 6.2,
1.7 Hz, CH), 1.71 (1H, s, CH3), 1.64–1.25 (6H, m,
3 · CH2), 0.94–0.82 (9H, m, 3 · CH3); m/z (CI) 213
(MH+, 100%); Found: MH+, 213.1860. C13H24O2
requires: MH+, 213.1854. The minor isomer, which
became more significant on standing due to epimerisation,
showed distinct 1H NMR resonances at 5.01 (1H, t, J
2.7 Hz, OCHO) and 4.49 (1H, d, J 0.7 Hz, CCH).
OC(O)CH2), 2.60–2.50 (1H, m, CHCH3), 2.16 (1H, dd, J
17.0, 4.0 Hz, OC(O)CH2), 1.80–1.27 (6H, m, 3 · CH2),
0.98 (3H, d, J 7.0 Hz, CH3CH), 0.91 (3H, t, J 7.1 Hz,
CH2CH3); dC (125 MHz, CDCl3) 176.9 (OCO), 83.7
(CHCO), 37.6 (CH), 33.0 (CH2), 29.6 (CH2), 28.0 (CH2),
22.5 (CH2), 13.9 (CH3), 13.8 (CH3). These data are in
accord with the literature: (a) Reissig, H.; Angert, H.;
Kunz, T.; Janowitz, A.; Handke, G.; Bruce-Adjei, E. J.
Org. Chem. 1993, 58, 6280–6285; (b) Moret, E.; Schlosser,
M. Tetrahedron Lett. 1984, 25, 4491–4494.
Data for 14: 1H NMR (250 MHz, CDCl3) 4.40 (1H, dd, J
5.8, 4.5 Hz, OCH), 2.66 (1H, dd,
J 16.9, 7.8 Hz,
OCOCH2), 2.60–2.50 (1H, m, CHCH3), 2.16 (1H, dd, J
16.9, 3.9 Hz, OCOCH2), 1.69–1.26 (8H, m, 3CH2), 0.98
(3H, d, J 7.0 Hz, CH3CH), 0.87 (3H, t, J 7.0 Hz,
CH2CH3), dC (125 MHz, CDCl3) 176.8 (OCO), 83.6
(CHCO), 37.6, 31.6, 29.8, 25.6, 22.5 (5 · CH2), 33.0
(CH), 25.1, 13.9 (CH3, CH3). These data are in accord
with the literature: (a) Jefford, C. W.; Sledeski, A. W.;
Boukouvalas, J. Helv. Chim. Acta 1989, 72, 1362–1370; (b)
Rojo, J.; Garcia, M.; Carretero, J. C. Tetrahedron 1993,
49, 9787–9800.