Full Paper
[
[
[
[
[
2] O. Johansson, M. Borgström, R. Lomoth, M. Palmblad, J. Bergquist, L.
Hammarström, L. Sun, B. Åkermark, Inorg. Chem. 2003, 42, 2908–2918.
3] A. Amini, A. Harriman, A. Mayeux, Phys. Chem. Chem. Phys. 2004, 6, 1157–
1633–1640; e) Y.-C. Lin, C.-T. Chen, Org. Lett. 2009, 11, 4858–4861; f) Y.-
K. Yang, J. Tae, Org. Lett. 2006, 8, 5721–5723; g) X. Yang, J. Walpita, D.
Zhou, H. L. Luk, S. Vyas, R. S. Khnayzer, S. C. Tiwari, K. Diri, C. M. Hadad,
F. N. Castellano, A. I. Krylov, K. D. Glusac, J. Phys. Chem. B 2013, 117,
15290–15296.
1164.
4] a) E. A. Medlycott, G. S. Hanan, Chem. Soc. Rev. 2005, 34, 133–142; b)
E. A. Medlycott, G. S. Hanan, Coord. Chem. Rev. 2006, 250, 1763–1782.
5] M. Maestri, N. Armaroli, V. Balzani, E. C. Constable, A. M. W. Car-
gill Thompson, Inorg. Chem. 1995, 34, 2759–2767.
6] a) T. Österman, M. Abrahamsson, H.-C. Becker, L. Hammarström, P. Pers-
son, J. Phys. Chem. A 2012, 116, 1041–1050; b) T. Österman, P. Persson,
Chem. Phys. 2012, 407, 76–82.
[22] a) L. Grubert, W. Abraham, Tetrahedron 2007, 63, 10778–10787; b) L.
Grubert, H. Hennig, W. Abraham, Tetrahedron 2009, 65, 5936–5944; c) A.
Vetter, W. Abraham, Org. Biomol. Chem. 2010, 8, 4666–4681.
[23] a) J.-P. Collin, S. Guillerez, J.-P. Sauvage, F. Barigelletti, L. de Cola, L. Flami-
gni, V. Balzani, Inorg. Chem. 1991, 30, 4230–4238; b) G. J. E. Davidson,
S. J. Loeb, P. Passaniti, S. Silvi, A. Credi, Chem. Eur. J. 2006, 12, 3233–3242.
2
+ 3
[
7] a) M. Hissler, A. Harriman, A. Khatyr, R. Ziessel, Chem. Eur. J. 1999, 5,
[24] Compare systems reported by Hanan et al.: [Ru(pm-tpy) ]
MLCT E00
2
3
3366–3381; b) N. D. McClenaghan, Y. Leydet, B. Maubert, M. T. Indelli, S.
(77 K) 1.83–1.87 eV, Ant E00 (77 K) 1.85 eV.
Campagna, Coord. Chem. Rev. 2005, 249, 1336–1350; c) X.-y. Wang, A.
Del Guerzo, R. H. Schmehl, J. Photochem. Photobiol. C 2004, 5, 55–77; d)
J. Wang, Y.-Q. Fang, L. Bourget-Merle, M. I. J. Polson, G. S. Hanan, A. Juris,
F. Loiseau, S. Campagna, Chem. Eur. J. 2006, 12, 8539–8548; e) J. Wang,
E. A. Medlycott, G. S. Hanan, F. Loiseau, S. Campagna, Inorg. Chim. Acta
[25]
+
A brief survey on comparable pristine compounds, viz. PhAcr and
Ru(ttpy) ] , results in a Gibbs free energy value of –0.18 eV for the p-
2
e T process.
26] S. Encinas, L. Flamigni, F. Barigelletti, E. C. Constable, C. E. Housecroft,
2+
[
–
[
E. R. Schofield, E. Figgemeier, D. Fenske, M. Neuburger, J. G. Vos, M. Zehn-
der, Chem. Eur. J. 2002, 8, 137–150.
27] A CCDC database search performed for the parent 4′-(thiophen-2-yl)-2,
2007, 360, 876–884.
[
[
8] a) G. Albano, V. Balzani, E. C. Constable, M. Maestri, D. R. Smith, Inorg.
Chim. Acta 1998, 277, 225–231; b) E. C. Constable, D. R. Smith, Supramol.
Chem. 1994, 4, 5–7.
[
2′:6′2′′-terpyridine gave 21 hits with CDCC No. 163154–55, 693514,
694383–89, 724618, 725923, 778308–09, 790398–400 799943–44,
810489, and 822321 considered.
9] a) C. Bhaumik, S. Das, D. Maity, S. Baitalik, Dalton Trans. 2012, 41, 2427–
2438; b) D. Mondal, M. Bar, S. Mukherjee, S. Baitalik, Inorg. Chem. 2016,
[
28] E. C. Constable, R. W. Handel, C. E. Housecroft, A. Farran Morales, B. Ven-
tura, L. Flamigni, F. Barigelletti, Chem. Eur. J. 2005, 11, 4024–4034.
29] a) E. C. Constable, A. M. W. Cargill Thompson, J. Chem. Soc., Dalton Trans.
5
5, 9707–9724; c) D. Maity, C. Bhaumik, D. Mondal, S. Baitalik, Inorg.
Chem. 2013, 52, 13941–13955; d) S. Karmakar, D. Maity, S. Mardanya, S.
Baitalik, Inorg. Chem. 2014, 53, 12036–12049.
[
1992, 2947–2950; b) E. C. Constable, A. M. W. Cargill Thompson, J. Chem.
[
10] a) T. Schröder, S. N. Sahu, J. Mattay in Topics in Current Chemistry, Vol.
19 (Eds.: M. Albrecht, F. E. Hahn, D. Ajami), Springer, Heidelberg, 2012;
Soc., Dalton Trans. 1994, 1409–1418; c) J. E. Beves, E. L. Dunphy, E. C.
Constable, C. E. Housecroft, C. J. Kepert, M. Neuburger, D. J. Price, S.
Schaffner, Dalton Trans. 2008, 386–396; d) J. E. Beves, D. J. Bray, J. K.
Clegg, E. C. Constable, C. E. Housecroft, K. A. Jolliffe, C. J. Kepert, L. F.
Lindoy, M. Neuburger, D. J. Price, S. Schaffner, F. Schaper, Inorg. Chim.
Acta 2008, 361, 2582–2590; e) J. E. Beves, E. C. Constable, S. Decurtins,
E. L. Dunphy, C. E. Housecroft, T. D. Keene, M. Neuburger, S. Schaffner,
J. A. Zampese, CrystEngComm 2009, 11, 2406–2416.
3
b) F. Wehmeier, J. Mattay, Beilstein J. Org. Chem. 2010, 6, 53; c) F. Weh-
meier, J. Mattay, Beilstein J. Org. Chem. 2010, 6, 54.
[
[
11] Or A+ as shorthand, such as, in formulas of complexes.
12] a) J. Hu, B. Xia, D. Bao, A. Ferreira, J. Wan, G. Jones II, V. I. Vullev, J. Phys.
Chem. A 2009, 113, 3096–3107; b) A. C. Benniston, A. Harriman, Chem.
Soc. Rev. 2006, 35, 169–179; c) J. Lappe, R. J. Cave, M. D. Newton, I. V.
Rostov, J. Phys. Chem. B 2005, 109, 6610–6619; d) S. A. Jonker, F. Ariese,
J. W. Verhoeven, Recl. Trav. Chim. Pays-Bas 1989, 108, 109–115; e) G.
Jones II, M. S. Farahat, S. R. Greenfield, D. J. Gosztola, M. R. Wasielewski,
Chem. Phys. Lett. 1994, 229, 40–46; f) H. van Willigen, G. Jones II, M. S.
Farahat, J. Phys. Chem. 1996, 100, 3312–3316.
[
30] a) E. C. Constable, E. L. Dunphy, C. E. Housecroft, W. Kylberg, M. Neubur-
ger, S. Schaffner, E. R. Schofield, C. B. Smith, Chem. Eur. J. 2006, 12, 4600–
4
610; b) E. C. Constable, C. E. Housecroft, A. M. W. Cargill Thompson, P.
Passaniti, S. Silvi, M. Maestri, A. Credi, Inorg. Chim. Acta 2007, 360, 1102–
110; c) E. C. Constable, C. E. Housecroft, M. Neuburger, S. Schaffner, F.
1
[
13] a) A. C. Benniston, A. Harriman, J. W. Verhoeven, Phys. Chem. Chem. Phys.
Schaper, Inorg. Chem. Commun. 2006, 9, 616–619; d) M. G. Lobello, S.
Fantacci, A. Credi, F. de Angelis, Eur. J. Inorg. Chem. 2011, 2011, 1605–
2008, 10, 5156–5158 and references cited therein; b) S. Fukuzumi, H.
Kotani, K. Ohkubo, Phys. Chem. Chem. Phys. 2008, 10, 5159–5162 and
references cited therein; c) A. C. Benniston, A. Harriman, P. Li, J. P. Rostron,
J. W. Verhoeven, Chem. Commun. 2005, 2701–2703; d) S. Zilberg, Phys.
Chem. Chem. Phys. 2010, 12, 10292–10294.
1
613; e) C. Shen, P. Wang, J. E. Beves, Polyhedron 2016, 103, 241–247.
[
31] a) E. C. Constable, M. Devereux, E. L. Dunphy, C. E. Housecroft, J. A. Rudd,
J. A. Zampese, Dalton Trans. 2011, 40, 5505–5515; b) A. L. Kaledin, Z.
Huang, Q. Yin, E. L. Dunphy, E. C. Constable, C. E. Housecroft, Y. V. Geletii,
T. Lian, C. L. Hill, D. G. Musaev, J. Phys. Chem. A 2010, 114, 6284–6297.
32] J. Eberhard, K. Peuntinger, S. Rath, B. Neumann, H.-G. Stammler, D. M.
Guldi, J. Mattay, Photochem. Photobiol. Sci. 2014, 13, 380–396.
[
[
14] K. Suga, K. Ohkubo, S. Fukuzumi, J. Phys. Chem. A 2003, 107, 4339–4346.
15] a) K. Ohkubo, S. Fukuzumi, Org. Lett. 2000, 2, 3647–3650; b) K. Suga, K.
Ohkubo, S. Fukuzumi, J. Phys. Chem. A 2005, 109, 10168–10175; c) K.
Ohkubo, K. Suga, S. Fukuzumi, Chem. Commun. 2006, 2018–2020; d) X.
Fang, Y.-C. Liu, C. Li, J. Org. Chem. 2007, 72, 8608–8610.
16] a) A. G. Griesbeck, M. Cho, Org. Lett. 2007, 9, 611–613; b) K. Ohkubo, K.
Mizushima, R. Iwata, S. Fukuzumi, Chem. Sci. 2011, 2, 715–722; c) K. Oh-
kubo, A. Fujimoto, S. Fukuzumi, Chem. Commun. 2011, 47, 8515–8517;
d) D. J. Wilger, N. J. Gesmundo, D. A. Nicewicz, Chem. Sci. 2013, 4, 3160–
[
[
33] a) S. Fukuzumi, K. Ohkubo, Y. Tokuda, T. Suenobu, J. Am. Chem. Soc.
2
1
000, 122, 4286–4294; b) K. Lehmstedt, F. Dostal, Ber. Dtsch. Chem. Ges.
939, 72, 804–806; c) T. Suzuki, Y. Yoshimoto, T. Takeda, H. Kawai, K.
[
Fujiwara, Chem. Eur. J. 2009, 15, 2210–2216; d) A. R. Katritzky, W. H.
Ramer, J. Org. Chem. 1985, 50, 852–856; e) H. Kawai, T. Takeda, K. Fuji-
wara, M. Wakeshima, Y. Hinatsu, T. Suzuki, Chem. Eur. J. 2008, 14, 5780–
3165.
5
793.
[
[
[
[
17] A. Joshi-Pangu, F. Lévesque, H. G. Roth, S. F. Oliver, L.-C. Campeau, D.
Nicewicz, D. A. DiRocco, J. Org. Chem. 2016, 81, 7244–7249.
18] M. H. Shaw, J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016, 81, 6898–
926.
19] K. Kasama, K. Kikuchi, Y. Nishida, H. Kokubun, J. Phys. Chem. 1981, 85,
148–4153.
20] a) K. Kikuchi, Y. Hattori, C. Sato, H. Kokubun, J. Phys. Chem. 1990, 94,
039–4042; b) Ò. Rubio-Pons, L. Serrano-Andrés, M. Merchán, J. Phys.
[
[
[
34] a) A. M. W. Cargill Thompson, Coord. Chem. Rev. 1997, 160, 1–52; b) M.
Heller, U. S. Schubert, Eur. J. Org. Chem. 2003, 2003, 947–961.
35] a) F. Kröhnke, Synthesis 1976, 1–24; b) I. Sasaki, Synthesis 2016, 48, 1974–
6
1
992.
36] a) E. C. Constable, A. M. W. Cargill Thompson, D. A. Tochter, M. A. M.
Daniels, New J. Chem. 1992, 16, 855–867; b) R. Passalacqua, F. Loiseau,
S. Campagna, Y.-Q. Fang, G. S. Hanan, Angew. Chem. Int. Ed. 2003, 42,
1608–1611; Angew. Chem. 2003, 115, 1646.
4
4
Chem. A 2001, 105, 9664–9673.
[
21] a) D. Zhou, R. Khatmullin, J. Walpita, N. A. Miller, H. L. Luk, S. Vyas, C. M.
Hadad, K. D. Glusac, J. Am. Chem. Soc. 2012, 134, 11301–11303; b) A. J.
Ackmann, J. M. J. Fréchet, Chem. Commun. 1996, 605–606; c) J. W. Bun-
ting, V. S. F. Chew, S. B. Abhyankar, Y. Goda, Can. J. Chem. 1984, 62, 351–
[37] W. Goodall, J. A. G. Williams, J. Chem. Soc., Dalton Trans. 2000, 2893–
2895.
[38] J.-F. Lefebvre, D. Saadallah, P. Traber, S. Kupfer, S. Gräfe, B. Dietzek, I.
Baussanne, J. de Winter, P. Gerbaux, C. Moucheron, M. Chavarot-Kerlidou,
M. Demeunynck, Dalton Trans. 2016, 45, 16298–16308.
354; d) B. Zhou, K. Kano, S. Hashimoto, Bull. Chem. Soc. Jpn. 1988, 61,
Eur. J. Org. Chem. 2018, 2682–2700 www.eurjoc.org
2699
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim