Pleas De ad l too nn oT tr aa nd sj au cs t ti omn sa rgins
Page 8 of 9
ARTICLE
In order to compare the reaction trend of probes toward
sulphide according the substitution position of the reaction site
on the main ligand, we synthesized probes 16 and 21 (Scheme
Journal Name
DOI: 10.1039/C8DT04901G
L. Li, M. Bhatia, Y. Z. Zhu, Y. C. Zhu, R. D. Ramnath, Z. J. Wang,
1
0719.
6
F. B. M. Anuar, M. Whiteman, M. Salto-Tellez and P. K. Moore,
FASEB J., 2005, 19, 1196-1198.
3
). First, we investigated the phosphorescence spectra of
probes 16 and 21 (10 μM in CH CN/DMSO = 5:1, λex = 380 nm)
Fig. S29). The PL intensities of 16 and 21 are 0.5 and 0.4 times
3
7
8
K. Abe and H. Kimura, J. Neurosci., 1996, 16, 1066.
B. D. Paul and S. H. Snyder, Nat. Rev. Mol. Cell Biol., 2012, 13
,
(
4
99.
T. W. Miller, J. S. Isenberg and D. D. Roberts, Chem. Rev., 2009,
09, 3099-3124.
that of 1, respectively. The phosphorescence spectra of probes
9
1
1
1
1
and 16 showed similar tendency upon reaction with sulphide.
1
The emission intensity of 16 also gradually decreased over 1 h
with the addition of sulphide (Fig. S30 (a)). However, 21 with
green emission (emission maximum at 505 nm) exhibited no
significant changes upon addition of sulphide (Fig. S30 (b)). 16
turned out to be selective for sulphide (Fig. S31).
0 Y.-H. Chen, W.-Z. Yao, B. Geng, Y.-L. Ding, M. Lu, M.-W. Zhao
and C.-S. Tang, Chest, 2005, 128, 3205-3211.
1 K. Eto, T. Asada, K. Arima, T. Makifuchi and H. Kimura,
Biochem. Biophys. Res. Commun., 2002, 293, 1485-1488.
2 P. Kamoun, M.-C. Belardinelli, A. Chabli, K. Lallouchi and B.
Chadefaux-Vekemans, Am. J. Med. Genet., Part A, 2003, 116A
,
ECL measurements of 16 and 21 were performed in a
3
10-311.
mixture of CH
probe (10 mM TPA with 0.1M TBAPF
electrolyte). The ECL intensities of 16 and 21 are 0.1 and 0.3
times that of , respectively (Fig. S32). The ECL intensity of 16
10 µM) decreased with the addition of sulphide (200 μM) while
3
CN and DMSO (v/v 5:1) in the presence of 10 μM 13 Y. Kaneko, Y. Kimura, H. Kimura and I. Niki, Diabetes, 2006, 55
,
1
391.
6
as the supporting
1
1
4 L. Wu, W. Yang, X. Jia, G. Yang, D. Duridanova, K. Cao and R.
Wang, Lab. Invest., 2008, 89, 59.
5 S. Fiorucci, E. Antonelli, A. Mencarelli, S. Orlandi, B. Renga, G.
Rizzo, E. Distrutti, V. Shah and A. Morelli, Hepatology, 2005,
42, 539-548.
1
(
other analytes showed relatively small changes. In contrast, 21
1
1
6 G. A. Cutter and T. J. Oatts, Anal. Chem., 1987, 59, 717-721.
7 B. Spilker, J. Randhahn, H. Grabow, H. Beikirch and P.
Jeroschewski, J. Electroanal. Chem., 2008, 612, 121-130.
8 N. Mahapatra, S. Datta and M. Halder, J. Photochem.
Photobiol., A, 2014, 275, 72-80.
did not show any response to the addition of all the analytes
(Fig. S33). These results show that the substitution position of
the reaction site on the main ligand of Ir(III) complexes is critical
in designing ECL probes.
1
1
2
2
9 F. Yu, P. Li, P. Song, B. Wang, J. Zhao and K. Han, Chem.
Commun., 2012, 48, 2852-2854.
Conclusion
0 J. Bae, M. G. Choi, J. Choi and S.-K. Chang, Dyes Pigm., 2013,
In summary, we have developed an ECL-based
99, 748-752.
chemodosimetric probe
sulphide produced
1
for sulphide. Treatment of
by cascade reactions involving
1 with
1 Y. Chen, C. Zhu, Z. Yang, J. Chen, Y. He, Y. Jiao, W. He, L. Qiu, J.
2
Cen and Z. Guo, Angew. Chem., Int. Ed., 2013, 52, 1688-1691.
hydrosulphide-mediated reduction and intramolecular 22 C. Liu, J. Pan, S. Li, Y. Zhao, L. Y. Wu, C. E. Berkman, A. R.
Whorton and M. Xian, Angew. Chem., Int. Ed., 2011, 50
0327-10329.
3 A. R. Lippert, E. J. New and C. J. Chang, J. Am. Chem. Soc., 2011,
33, 10078-10080.
4 Z. Wu, Z. Li, L. Yang, J. Han and S. Han, Chem. Commun., 2012,
, 10120-10122.
,
cyclization/cleavage, which reduced ECL due to the
unfavourable electron transfer from the TPA radical to the
LUMO of 2.
1
2
2
2
1
4
8
5 K. Sasakura, K. Hanaoka, N. Shibuya, Y. Mikami, Y. Kimura, T.
Komatsu, T. Ueno, T. Terai, H. Kimura and T. Nagano, J. Am.
Chem. Soc., 2011, 133, 18003-18005.
Conflicts of interest
2
2
2
2
6 M. M. Richter, Chem. Rev., 2004, 104, 3003-3036.
7 W. Miao, Chem. Rev., 2008, 108, 2506-2553.
Acknowledgements
8 Y. You and W. Nam, Chem. Soc. Rev., 2012, 41, 7061-7084.
9 Y. Zhou, H. Gao, X. Wang and H. Qi, Inorg. Chem.,, 2015, 54
,
,
1
446-1453.
This work was supported by the NRF grant (No.
3
3
3
3
0 H. A. Henthorn and M. D. Pluth, J. Am. Chem. Soc., 2015, 137
2
018R1A2B2001293) funded by the MSIP.
15330-15336.
1 T. Wada, A. Ohkubo, A. Mochizuki and M. Sekine, Tetrahedron
Lett., 2001, 42, 1069-1072.
2 K. R. Love, R. B. Andrade and P. H. Seeberger, J. Org. Chem.,
Notes and references
2
001, 66, 8165-8176.
1
M. M. Gadalla and S. H. Snyder, J. Neurochem., 2010, 113, 14-
6.
A. Papapetropoulos, A. Pyriochou, Z. Altaany, G. Yang, A.
Marazioti, Z. Zhou, M. G. Jeschke, L. K. Branski, D. N. Herndon,
3 R. Pellicciari, E. Camaioni, G. Costantino, L. Formentini, P.
Sabbatini, F. Venturoni, G. Eren, D. Bellocchi, A. Chiarugi and
2
2
F. Moroni, ChemMedChem, 2008, 3, 914-923.
4 P. J. Hay, J. Phys. Chem. A,, 2002, 106, 1634-1641.
3
3
R. Wang and C. Szabó, Proc. Natl. Acad. Sci. U. S. A., 2009, 106
1972-21977.
G. Yang, L. Wu and R. Wang, FASEB J., 2006, 20, 553-555.
G. Yang, L. Wu, B. Jiang, W. Yang, J. Qi, K. Cao, Q. Meng, A. K.
Mustafa, W. Mu, S. Zhang, S. H. Snyder and R. Wang, Science.,
,
5 K. S. Bejoymohandas, A. Kumar, S. Sreenadh, E. Varathan, S.
Varughese, V. Subramanian and M. L. P. Reddy, Inorg. Chem.,,
2
3
4
2
016, 55, 3448-3461.
3
6 Y. Zu and A. J. Bard, Anal. Chem., 2000, 72, 3223-3232.
2
008, 322, 587-590.
5
Y.-J. Peng, J. Nanduri, G. Raghuraman, D. Souvannakitti, M. M.
Gadalla, G. K. Kumar, S. H. Snyder and N. R. Prabhakar,
8
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins