6 Additional methods have been reported for deprotection of aryl and alkyl
tosylates and tosylamides: (a) M. Sridhar, B. A. Kumar and R. Narender,
Tetrahedron Lett., 1998, 39, 2847–2850; (b) T. Ankner and
G. Hilmersson, Org. Lett., 2009, 11, 503–506; (c) E. R. Civitello and
H. Rapoport, J. Org. Chem., 1992, 57, 834–840; (d) D. B. Denney and
B. Goldstein, J. Org. Chem., 1956, 21, 479; (e) W. D. Closson, P. Wriede
and S. Bank, J. Am. Chem. Soc., 1966, 88, 1581–1583; (f) S. Ji, L.
B. Gortler, A. Waring, A. Battisti, S. Bank, W. D. Closson and P. Wriede,
J. Am. Chem. Soc., 1967, 89, 5311–5312; (g) W. Oppolzer, H. Bienaymé
and A. Genevois-Borella, J. Am. Chem. Soc., 1991, 113, 9660–9661;
(h) D. I. Weisblat, B. J. Magerlein and D. R. Myers, J. Am. Chem. Soc.,
1953, 75, 3630–3632; (i) W. Kenner and M. A. Murray, J. Chem. Soc.,
1949, S178–S181; ( j) E. Vellemae, O. Lebedev and U. Maeorg, Tetrahe-
dron Lett., 2007, 49, 1373–1375; (k) G. Sabitha, S. Abraham, B.
V. Subba Reddy and J. S. Yadav, Synlett, 1999, 1745–1746; (l) E.
H. Gold and E. Babad, J. Org. Chem., 1972, 37, 2208–2209.
In summary, cleavage of aliphatic triflates by reaction with
endiamine 13 affords the corresponding alcohols under mild
reaction conditions cleanly and in excellent yield, the first time
that this has been achieved for any reagent. The reaction of aryl
triflates also gave excellent yields of S–O bond cleavage and no
evidence of alternative routes such as C–O bond cleavage that is
seen with some other reducing systems.4,5c The by-product is
trifluoromethanesulfinate, as seen in conversion to a sulfone on
reaction with benzyl bromide; the sulfinate is not subject to the
further reduction seen in some other reducing systems.6b Finally,
the first examples of cleavage of triflamides with the neutral
organic reagents are reported; this reaction needs more vigorous
conditions than for cleavage of triflate esters.
7 (a) J. A. Murphy, T. A. Khan, S. Z. Zhou, D. W. Thomson and
M. Mahesh, Angew. Chem., Int. Ed., 2005, 44, 1356–1360; (b) J.
A. Murphy, S. Z. Zhou, D. W. Thomson, F. Schoenebeck, M. Mohan, S.
R. Park, T. Tuttle and L. E. A. Berlouis, Angew. Chem., Int. Ed., 2007,
46, 5178–5183; (c) F. Schoenebeck, J. A. Murphy, S. Z. Zhou,
Y. Uenoyama, Y. Miclo and T. Tuttle, J. Am. Chem. Soc., 2007, 129,
13368–13369; (d) J. A. Murphy, J. Garnier, S. R. Park, F. Schoenebeck,
S. Z. Zhou and A. T. Turner, Org. Lett., 2008, 10, 1227–1230;
(e) J. Garnier, J. A. Murphy, S. Z. Zhou and A. T. Turner, Synlett, 2008,
2127–2131; (f) S. P. Y. Cutulic, J. A. Murphy, H. Farwaha, S. Z. Zhou
and E. Chrystal, Synlett, 2008, 2132–2136; (g) J. A. Murphy,
F. Schoenebeck, N. J. Findlay, D. W. Thomson, S. Z. Zhou and
J. Garnier, J. Am. Chem. Soc., 2009, 131, 6475–6479;
(h) S. P. Y. Cutulic, N. J. Findlay, S. Z. Zhou, E. Chrystal and J.
A. Murphy, J. Org. Chem., 2009, 74, 8713–8718; (i) J. Garnier, A.
R. Kennedy, L. E. A. Berlouis, A. T. Turner and J. A. Murphy, Beilstein
J. Org. Chem., 2010, 6, No. 73.
8 For prior work on imidazole-derived electron donors, see:
(a) J. Bourson, Bull. Soc. Chim. Fr., 1971, 3541; (b) S. Hünig,
D. Scheutzow, H. Schlaf and H. Quast, Justus Liebigs Ann. Chem.,
1972, 765, 110–125; (c) S. Hünig, D. Scheutzow and H. Schlaf,
Justus Liebigs Ann. Chem., 1972, 765, 126–132; (d) R. P. Thummel,
V. Goulle and B. Chen, J. Org. Chem., 1989, 54, 3057–3061;
(e) Z. Shi and R. P. Thummel, J. Org. Chem., 1995, 60, 5935–5945;
(f) T. A. Taton and P. Chen, Angew. Chem., 1996, 108, 1098–1100,
(Angew. Chem., Int. Ed. Engl., 1996, 35, 1011–1013); (g) J. R. Ames,
M. A. Houghtaling, D. L. Terrian and T. P. Mitchell, Can. J. Chem.,
1997, 75, 28–36.
Acknowledgements
We thank EPSRC for funding and EPSRC National Mass Spec-
trometry Service Centre, Swansea, for mass spectra.
References
1 (a) J. B. Hendrickson, D. D. Sternbach and K. W. Bair, Acc. Chem. Res.,
1977, 10, 306–312; (b) M. L. Edwards, D. M. Stemerick and J.
R. McCarthy, Tetrahedron Lett., 1990, 31, 3417–3420; (c) K. E. Bell, D.
W. Knight and M. B. Gravestock, Tetrahedron Lett., 1995, 36, 8681–
8684.
2 J. B. Hendrickson, R. Bergeron and D. D. Sternbach, Tetrahedron, 1975,
31, 2517–2521.
3 (a) A. M. Echavarren and J. K. Stille, J. Am. Chem. Soc., 1987, 109,
5478–5486; (b) A. Jutand and S. Négri, Eur. J. Org. Chem., 1998, 1811–
1821; (c) C. A. James and V. Snieckus, J. Org. Chem., 2009, 74, 4080–
4093; (d) J. P. Wolfe and S. L. Buchwald, J. Org. Chem., 1997, 62,
1264–1267; (e) J. Louie, M. S. Driver, B. C. Hamann and J. F. Hartwig,
J. Org. Chem., 1997, 62, 1268–1273.
4 (a) D. A. Evans, C. J. Dinsmore, D. A. Evrard and K. M. DeVries, J. Am.
Chem. Soc., 1993, 115, 6426–6427; (b) G. Radivoy, F. Alonso and
M. Yus, Tetrahedron, 1999, 55, 14479–14490; (c) F. Alonso and M. Yus,
Chem. Soc. Rev., 2004, 33, 284–293.
9 For discussion of electron transfer and dissociation, see: J.-M. Savéant,
Acc. Chem. Res., 1993, 26, 455–461.
10 (a) C. Aubert and J.-P. Bégué, Synthesis, 1985, 759–760;
(b) M. Nakagawa, A. Saito, A. Soga, N. Yamamoto and T. Taguchi,
Tetrahedron Lett., 2005, 46, 5257–5261.
5 (a) T. Ohgiya and S. Nishiyama, Tetrahedron Lett., 2004, 45, 6317–6320;
(b) D. O. Kiesewetter, J. A. Katzenellenbogen, M. R. Kilbourn and M.
J. Welch, J. Org. Chem., 1984, 49, 4900–4905; (c) A. Jutand, S. Négri
and A. Mosleh, J. Chem. Soc., Chem. Commun., 1992, 1729–1730;
(d) Y. Himeshima, H. Kobayashi and T. Sonoda, J. Am. Chem. Soc.,
1985, 107, 5286–5288.
11 A. Jutand and A. Mosleh, J. Org. Chem., 1997, 62, 261–274.
5810 | Org. Biomol. Chem., 2012, 10, 5807–5810
This journal is © The Royal Society of Chemistry 2012