Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Gerhardt and Weck
vital role in the assembly of purely synthetic systems,12-14
creating geometric and highly controlled architectures12-20 or
functional polymeric materials.21-32 However, its use in the
assembly of biological suprastructures, specifically with pep-
tides, is not nearly as developed. The early use of metal
coordination to control the design and folding of natural peptides
was reported in 1990 by Ghadiri and co-workers33,34 and
Degrado and co-workers.35 Ghadiri coaxed linear peptides to
form helices by cross-linking the peptides with transition-metal
ions via side-chain coordination of two natural residues. Degrado
used coordination of histidine residues to Zn2+ to fold a peptide
into a structural approximation of the enzyme carbonic anhy-
drase.36 Sasaki and co-workers were the first to use unnatural
ligands to self-assemble triple-helix bundles by chelating Fe2+
with bipyridines covalently attached to the peptides’ N-
termini.37,38
FIGURE 1. Pincer metallacycle: E is a neutral two-electron donor;
R is a tethering group.
unnatural residues containing a diiminoacetic acid side-chain
that was able to induce helix nucleation.40
After Hopkin’s seminal work, there were many reports using
peptides with unnatural amino acids with metal coordination
to stabilize or create defined nanostructures such as helixes,41,42
loops,43 cycles,39 and other scaffolds.44-46 Our report is the first
study of peptides containing side-chain recognition units
coordinated to a metalated pincer complex. We envision these
peptides as models. Once fully understood, they can be situated
into a cyclic peptide framework and coordinated with multi-
functional/faceted metalated receptors into larger networks and
structures.
The synthesis of peptides with unnatural residue side-chains
was the next step toward greater complexity and control in
metal-coordinating peptides. Novel synthetic residues preserve
the peptide backbone and can be redefined ad infinitum creating
diversity within supramolecular systems.39 Toward this goal,
Hopkins and co-workers synthesized a peptide with two identical
Metalated pincer complexes (Figure 1) have received con-
siderable attention within the field of supramolecular chemis-
try.47 This chemo-activated, single-site metal-coordination step
has been shown to be fast, quantitative, and chemo reversible
in a variety of solvents.16,41,47-50 Incorporation of one of its
ligands into the side-chain of an unnatural peptide would open
a simple and direct avenue to new peptide-supramolecular
structures, making the metalated pincer complex an ideal
candidate for achieving our goals.
(10) Parraga, G.; Horvath, S. J.; Eisen, A.; Taylor, W. E.; Hood, L.;
Young, E. T.; Klevit, R. E. Science 1988, 241, 1489.
(11) Warner, M.; Gustafsson, J. A. Front. Neuroendocrinol. 1995, 16,
224.
(12) Seidel, S. R.; Stang, P. J. Acc. Chem. Res. 2002, 35, 972.
(13) Stang, P. J. Chem.-Eur. J. 1998, 4, 19.
(14) Holliday, B. J.; Mirkin, C. A. Angew. Chem., Int. Ed. 2001, 40,
2022.
(15) Huck, W. T. S.; Hulst, R.; Timmerman, P.; van Veggel, F. C. J.
M.; Reinhoudt, D. N. Angew. Chem., Int. Ed. Engl. 1997, 36, 1006.
(16) Huck, W. T. S.; van Veggel, F. C. J. M.; Kropman, B. L.; Blank,
D. H. A.; Keim, E. G.; Smithers, M. M. A.; Reinhoudt, D. N. J. Am. Chem.
Soc. 1995, 117, 8293.
(17) Fujita, M.; Umemoto, K.; Yoshizawa, M.; Fujita, N.; Kusukawa,
T.; Biradha, K. Chem. Commun. 2001, 509.
(18) Amijs, C. H. M.; Berger, A.; Soulimani, F.; Visser, T.; van Klink,
G. P. M.; Lutz, M.; Spek, A. L.; van Koten, G. Inorg. Chem. 2005, 44,
6567.
(19) Hall, J. R.; Loeb, S. J.; Shimizu, G. K. H.; Yap, G. P. A. Angew.
Chem., Int. Ed. 1998, 37, 121.
The pincer ligand is a tridentate ligand that after metalation,
with a Pd or Pt, results in a four-coordinate square planar metal
complex.51-53 The three chelation sites most often have a central
carbon flanked by two neutral donor atoms (E) giving it an ECE
nomenclature.47 In this investigation, we used sulfur as the
donors and Pd as the metal center, i.e., an SCS-Pd pincer
complex. The fourth site is normally occupied by a halide that
can be abstracted quantitatively by a suitable silver salt.54 This
is the chemo trigger, which precipitates a silver halide leaving
an ionic palladium species with an open coordination site that
(20) Dijkstra, H. P.; Kruithof, C. A.; Ronde, N.; van de Coevering, R.;
Ramo´n, D. J.; Vogt, D.; van Klink, G. P. M.; van Koten, G. J. Org. Chem.
2003, 68, 675.
(21) Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P. Chem.
ReV. 2001, 101, 4071.
(39) Schmuck, C.; Wennemers, H. Highlights in Bioorganic Chemistry:
Methods and Applications; VCH: Weinheim, 2004.
(40) Ruan, F.; Chen, Y.; Hopkins, P. B. J. Am. Chem. Soc. 1990, 112,
9403.
(41) Doerr, A. J.; McLendon, G. L. Inorg. Chem. 2004, 43, 7916.
(42) Di Costanzo, L.; Geremia, S.; Randaccio, L.; Ichino, T.; Yanagihara,
R.; Yamada, T.; Marasco, D.; Lombardi, A.; Pavone, V. Dalton Trans. 2003,
787.
(43) Ishida, H.; Kyakuno, M.; Oishi, S. Biopolymers 2004, 76, 69.
(44) Ohr, K.; Gilmartin, B. P.; Williams, M. E. Inorg. Chem. 2005, 44,
7876.
(45) Tsurkan, M. V.; Ogawa, M. Y. Chem. Commun. 2004, 2092.
(46) Gilmartin, B. P.; Ohr, K.; McLaughlin, R. L.; Koerner, R.; Williams,
M. E. J. Am. Chem. Soc. 2005, 127, 9546.
(22) Hofmeier, H.; El-ghayoury, A.; Schenning, A. P. H. J.; Schubert,
U. S. Chem. Commun. 2004, 318.
(23) Hofmeier, H.; Schubert, U. S. Chem. Commun. 2005, 2423.
(24) Gerhardt, W.; Cˇ rne, M.; Weck, M. Chem.-Eur. J. 2004, 10, 6212.
(25) Higley, M. N.; Pollino, J. M.; Hollembeak, E.; Weck, M. Chem.-
Eur. J. 2005, 11, 2946.
(26) Pollino, J. M.; Stubbs, L. P.; Weck, M. J. Am. Chem. Soc. 2004,
126, 563.
(27) Pollino, J. M.; Weck, M. Chem. Soc. ReV. 2005, 34, 193.
(28) Valkama, S.; Lehtonen, O.; Lappalainen, K.; Kosonen, H.; Castro,
P.; Repo, T.; Torkkeli, M.; Serimaa, R.; ten Brinke, G.; Leskela¨, M.; Ikkala,
O. Macromol. Rapid Commun. 2003, 24, 556.
(29) Calzia, K. J.; Tew, G. N. Macromolecules 2002, 35, 6090.
(30) Iyer, P. K.; Beck, J. B.; Weder, C.; Rowan, S. J. Chem. Commun.
2005, 319.
(47) Albrecht, M.; van Koten, G. Angew. Chem., Int. Ed. 2001, 40, 3750.
(48) van Manen, H.-J.; Nakashima, K.; Shinkai, S.; Kooijman, H.; Spek,
A. L.; van Veggel, F. C. J. M.; Reinhoudt, D. N. Eur. J. Inorg. Chem.
2000, 2533.
(31) Dobrawa, R.; Wu¨rthner, F. J. Polym. Sci., Part A: Polym. Chem.
2005, 43, 4981.
(32) Loeb, S. J.; Shimizu, G. K. H. J. Chem. Soc., Chem. Commun. 1993,
1395.
(33) Ghadiri, M. R.; Choi, C. J. Am. Chem. Soc. 1990, 112, 1630.
(34) Ghadiri, M. R.; Fernholz, A. K. J. Am. Chem. Soc. 1990, 112, 9633.
(35) Handel, T.; DeGrado, W. F. J. Am. Chem. Soc. 1990, 112, 6710.
(36) Hamachi, I.; Kasagi, N.; Kiyonaka, S.; Nagase, T.; Mito-oka, Y.;
Shinkai, S. Chem. Lett. 2001, 16.
(37) Lieberman, M.; Sasaki, T. J. Am. Chem. Soc. 1991, 113, 1470.
(38) Lieberman, M.; Tabet, M.; Sasaki, T. J. Am. Chem. Soc. 1994, 116,
5035.
(49) Yount, W. C.; Loveless, D. M.; Craig, S. L. Angew. Chem., Int.
Ed. 2005, 44, 2746.
(50) van Manen, H.-J.; Fokkens, R. H.; van Veggel, F. C. J. M.;
Reinhoudt, D. N. Eur. J. Org. Chem. 2002, 3189.
(51) Moulton, C. J.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1976,
1020.
(52) Errington, J.; McDonald, W. S.; Shaw, B. L. J. Chem. Soc., Dalton
Trans. 1980, 2312.
(53) van Koten, G. Pure Appl. Chem. 1989, 61, 1681.
(54) Kraatz, H.-B.; Milstein, D. J. Organomet. Chem. 1995, 488, 223.
6334 J. Org. Chem., Vol. 71, No. 17, 2006