Chiral Azobenzene Compounds
FULL PAPER
crystallization from ethanol. The following alcohols were used to synthe-
size the corresponding chiral azobenzene compounds: cholesterol for
Azo-1, (S)-(+)-octanol for Azo-2, ethyl (S)-(ꢁ)-lactate for Azo-3,
(1R,2S,5R)-(ꢁ)-menthol for Azo-4, and isomannide for Azo-5.
(Sigma Koki Co.) for ultraviolet (UV) irradiation (366 nm) or SCF-42L
(Sigma Koki Co.) for visible light irradiation (436 nm).
Helical pitch measurement: The helical pitch of each induced cholesteric
phase was determined by the Cano wedge method.[27] Experiments for
determining helical pitch were performed with injected samples in a
wedge cell (EHC, Japan).
Menth: The nonphotochromic chiral compound (Menth) was synthesized
as follows. 4-Hydroxybenzoic acid was treated with 3,4-dihydro-2H-pyran
for protection of the hydroxy group and then with (1S,2R,5S)-(+)-men-
thol in the presence of DCC in dichloromethane to give 1-menthyl 4-(tet-
rahydropyran-2-yloxy)benzoate. This benzoate derivative was heated at
608C in ethanol for 4 h in the presence of pyridinium p-toluenesulfonate
to yield 2-menthyl 4-hydroxybenzoate, and this benzoate derivative was
condensed with terephthalic acid in dichloromethane in the presence of
DCC to yield the crude chiral compound, which was purified by column
chromatography (silica gel, CHCl3 as eluent) and recrystallized from eth-
anol.
[1] B. L. Feringa, R. A. van Delden, N. Koumura, E. M. Geertsema,
Chem. Rev. 2000, 100, 1789.
[2] Handbook of Liquid Crystals, Vol. 1 (Eds.: D. Demus, J. Goodby,
G. W. Gray, H.-W. Spiess, V. Vill), Wiley-VCH, Weinheim 1998.
[3] M. Schadt, Liq. Cryst. 1993, 14, 73.
[4] a) D. Dunmar, K. Toniyama, Handbook of Liquid Crystals, Vol. 1,
Wiley-VCS, Weinheim 1998, pp. 215–239; b) G. Meier, in Applica-
tions of Liquid Crystals, Springer, Berlin, Heidelberg, New York
1975, pp. 1–21; c) S. Chandrasekhar, Liquid Crystals, Cambridge
University Press, Cambridge, UK 1977.
[5] G. Gottarelli, M. Hibert, B. Samori, G. Solladie, G. Spada, R. Zim-
merman, J. Am. Chem. Soc. 1983, 105, 7318.
[6] G. Gottarelli, G. Spada, Mol. Cryst. Liq. Cryst. 1985, 123, 377.
[7] G. Gottarelli, B. Samorei, Tetrahedron 1981, 37, 395.
[8] D.-K. Yang, X.-Y. Huang, Y.-M. Zhu, Annu. Rev. Mater. Sci. 1997,
27.
[9] P. G. de Gennes, J. Prost, The Physics of Liquid Crystals, Oxford
Science Publications, 1993.
[10] Photochromism, Techniques of Chemistry, Vol. 3 (Ed.: G. H.
Brown), Wiley-Interscience, 1971.
E44: Low molecular weight nonchiral nematic LC, purchased from
Merck Co. Ltd., used as received.
The synthesized compounds were characterized by elemental analysis
and by IR and 1H NMR spectroscopy. The characterization data of the
compounds are as follows.
Azo-1: 1H NMR (CDCl3): d = 0.8–2.2 (m, 29H; methylene), 4.1(t, 2H;
ArOCH2-), 5.0 (m, 1H; COOCH-), 7.0–8.2 ppm (m, 8H; aromatic); IR:
n˜ = 1604 (aromatic), 1710 cmꢁ1 (C=O); elemental analysis calcd (%) for
C29H40N2O3: C 75.0, H 8.62, N 6.03; found: C 74.7, H 8.58, N 6.15.
Azo-2: 1H NMR (CDCl3): d = 0.7–1.8 (m, 27H; methylene), 4.0 (t, 2H;
ArOCH2-), 5.0 (m, 1H; COOCH-), 7.0–8.2 ppm (m, 8H; aromatic); IR:
n˜ = 1600 (aromatic), 1709 cmꢁ1 (C=O); elemental analysis calcd (%) for
C27H38N2O3: C 73.9, H 8.73, N 6.39; found: C 73.8, H 8.63, N 6.63.
[11] E. Sackmann, J. Am. Chem. Soc. 1971, 93, 25.
Azo-3: 1H NMR (CDCl3): d = 0.9, 1.6 (m, 6H; methyl), 1.2–1.8 (m,
11H; methylene), 4.0 (t, 2H; ArOCH2-), 4.2 (t, 2H; COOCH2-), 5.3 (m,
[12] P. van de Witte, M. Brehmer, J. Lub, Adv. Mater. 1998, 10, 1 7.
[13] P. van de Witte, M. Brehmer, J. Lub, J. Mater. Chem. 1999, 9, 9.
[14] P. van de Witte, J. Lub, Liq. Cryst. 1998, 24, 6.
[15] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, Liq. Cryst..1998, 24, 5.
[16] A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, J. Springer, Adv. Mater.
2000, 12, 1 6.
[17] A. Y. Bobrovsky, V. P. Shibaev, Adv. Funct. Mater. 2002, 12, 5.
[18] C. Ruslim, K. Ichimura, Adv. Mater. 2001, 13, 1 .
[19] C. Ruslim, K. Ichimura, Adv. Mater. 2001, 13, 9.
[20] C. Ruslim, K. Ichimura, J. Phys. Chem. B 2000, 104, 1 7.
[21] T. Yoshioka, T. Ogata, T Nonaka, M. Moritsugu, S. N. Kim, S. Kuri-
hara, Adv. Mater. 2005, 17.
1H; COOCH-), 7.0–8.2 ppm (m, 8H; aromatic); IR: n˜
= 1601 (aro-
matic), 1716, 1725 cmꢁ1 (C=O); elemental analysis calcd (%) for
C24H30N2O3: C 67.6, H 7.09, N 6.57; found: C 67.5, H 7.00, N 6.68.
Azo-4: 1H NMR (CDCl3): d = 0.8–2.2 (m, 29H; methylene), 4.1(t, 2H;
ArOCH2-), 5.0 (m, 1H; COOCH-), 7.0–8.2 ppm (m, 8H; aromatic); IR:
n˜
=
1604 (aromatic), 1710 cmꢁ1 (C=O); elemental analysis calcd for
C29H40N2O3: C 75.0, H 8.62, N 6.03; found: C 74.7, H 8.58, N 6.15.
Azo-5: 1H NMR (CDCl3): d = 1.3–1.8 (m, 16H; methylene), 4.0 (t, 4H;
ArOCH2-), 5.4 (m, 2H; COOCH-), 7.0–8.6 ppm (m, 16H; aromatic); IR:
n˜ = 1598 (aromatic), 1721 cmꢁ1 (C=O); elemental analysis calcd (%) for
C44H50N4O8: C 69.3, H 6.61, N 7.34; found: C 69.3, H 6.59, N 7.34.
[22] E. Sackmann, J. Am. Chem. Soc. 1968, 90, 1 3.
[23] S. Kurihara, S. Nomiyama, T. Nonaka, Chem. Mater. 2001, 13, 6.
[24] H. Coles, in Handbook of Liquid Crystals, Vol. 2A (Eds.: D. Demus,
J. Goodby, G. W. Gray, W.-H. Spiess, V. Vill), Wiley-VCH, Wein-
heim, 1998, Chapter 4, p. 382.
[25] a) G. SolladiØ, R. G Zimmermann, Angew. Chem. 1985, 97, 70;
Angew. Chem. Int. Ed. Engl. 1985, 24, 64; b) R. P. Lemieux, G. B.
Schuster, J. Org. Chem. 1993, 58, 100; c) G. Heppke, H. Marschal, P.
Nürnberg, F. Oestreicher, G. Scherowsky, Chem. Ber. 1981, 114,
2501; d) A. Y. Bobrovsky, N. I. Boiko, V. P. Shibaev, Liq. Cryst. 1998,
25, 79; e) N. P. M. Huck, W. F. Jangr, B. de Lange, B. L. Feringa, Sci-
ence 1996, 273, 1686.
[26] a) D. J. Dyer, U. P. Schçder, K. P. Chang, R. J. Twieg, Chem. Mater.
1997, 9, 1665; b) N. Tamaoki, A.V. Parfenov, A. Masaki, H. Matsu-
da, Adv. Mater. 1997, 9, 1102; c) N. Tamaoki, S. Song, M. Moriyama,
H. Matsuda, Adv. Mater. 2000, 12, 94; d) R. A. M. Hikmet, H. Kem-
perman, Nature, 1998, 392, 476; e) P. van de Vitte, E. E. Neuteboom,
M. Brehmer, J. Lub, J. Appl. Phys. 1999, 85, 7517; f) B. L. Feringa,
N. P. Huck, H. A. van Doren, J. Am. Chem. Soc. 1995, 117, 9929;
g) C. Denekamp, B. L. Feringa, Adv. Mater. 1998, 10, 1080.
[27] G. Solladie, R. G. Zimmermann, Angew. Chem. 1984, 96, 335;
Angew. Chem. Int. Ed. Engl. 1984, 23, 348.
Nonphotochromic chiral compound (Menth): 1H NMR (CDCl3): d
=
0.8–2.2 (m, 36H; methylene), 5.0 (m, 2H; COOCH-), 7.3–8.4 ppm (m,
12H; aromatic); IR: n˜ = 1064 (aromatic), 1708 cmꢁ1 (C=O); elemental
analysis calcd (%) for C42H50O8: C 73.9, H 7.38; found: C 73.8, H 7.39.
Characterization of azobenzene compounds and liquid crystal mixtures:
LC mixtures were prepared by addition of one of the azobenzene com-
pounds (Azo-n) and/or a nonphotochromic chiral compound (Menth) to
the host nematic LC (E44). The thermal phase transition behavior of the
synthesized compounds and their LC mixtures was examined by polariz-
ing optical microscopic observation (POM, Olympus BHSP polarizing
optical microscope; Mettler FP80 and FP82 hot stage and controller).
Preparation of compensated nematic LC mixtures: Compensated nematic
LC mixtures were prepared by mixing the nonphotochromic chiral com-
pound and a photochromic chiral azobenzene compound in E44 in the
ratio that compensated the otherꢀs HTP. The LC mixtures were injected
into a 5 mm glass cell with homogeneous or homeotropic alignment (EHC
Co., Ltd.) by capillary force.
Photoresponsive properties: While the sample was irradiated the change
in the helical structure was explored by monitoring of transmitted light
intensity through the samples with a diode laser (Suruga Seiki Co.;
670 nm; 3 mWcmꢁ2). The photoirradiation was carried out with a 500 W
high-pressure Hg lamp (Ushio) fitted with a glass filter: UTVAF-35
Received: July 4, 2006
Revised: October 11, 2006
Published online: January 3, 2007
Chem. Eur. J. 2007, 13, 2641– 2647
ꢁ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2647