Please do not adjust margins
Journal of Materials Chemistry A
Page 6 of 8
ARTICLE
Journal Name
The capillary of c-Au/IM-POP could be reused as shown in the
reduction of 1-chloro-4-nitrobenzene. The catalytic activity of
c-Au/IM-POP was maintained for over another four recycling
runs (Table 1, entry 2-5). The Au content within the catalyst
after four runs was experimentally measured to be 0.025
mmol g-1, which is nearly identical to the value prior to
initiating the reduction, showing the catalysis was
heterogeneous.
Acknowledgements
We gratefully acknowledge the NSFC (51573216), the NSF of
Guangdong Province (S2013030013474) and the FRF for the
Central Universities (16lgjc66, 17lgpy03) for financial support.
DOI: 10.1039/C7TA08985F
Notes and references
1
2
3
4
5
6
7
8
K. S. Elvira, X. C. i Solvas, R. C. R. Wootton and A. J.
deMello, Nat. Chem., 2013, ,905-915.
T. Rodrigues, P. Schneider and G. Schneider, Angew. Chem.,
Int. Ed., 2014, 53, 5750-5758.
H. Kim, K.-I. Min, K. Inoue, D. J. Im, D.-P. Kim and J.-i.
Yoshida, Science, 2016, 352, 691-694.
H. P. L. Gemoets, Y. Su, M. Shang, V. Hessel, R. Luque and T.
Noel, Chem. Soc. Rev., 2016, 45, 83-117.
P. W. Miller, L. E. Jennings, A. J. deMello, A. D. Gee, N. J. Long
and R. Vilar, Adv. Synth. Catal., 2009, 351, 3260-3268.
H. Lindstrom, R. Wootton and A. Iles, AICHE J., 2007, 53, 695-
702.
J. Zhang, C. Gong, X. Zeng and J. Xie, Coord. Chem. Rev.,
2016, 324, 39-53.
J. R. Goodell, J. P. McMullen, N. Zaborenko, J. R. Maloney, C.-
X. Ho, K. F. Jensen, J. A. Porco Jr and A. B. Beeler, J. Org.
Chem., 2009, 74, 6169-6180.
R. L. Hartman, J. P. McMullen and K. F. Jensen, Angew. Chem.
Int. Ed., 2011, 50, 7502-7519.
The catalytic tests of c-Au/IM-POP were then extended to
5
the reduction of
a range of nitrobenzene derivatives.
Nitrobenzene, 4-nitrotoluene, 3-nitrotoluene and 2-nitroluene
were efficiently reduced into corresponding amines while 4-
nitrobenzaldehyde was fully reduced into 4-aminobenzyl
alcohol using the microfluidic reactor with thick Au/IM-POP-
2BrB coating as catalyst (Table 1, entry 10-14). All the reactions
catalyzed by c-Au/IM-POP-2BrB reach high conversion (≥ 92
%), selectivity (≥ 94 %) and TOF (≥ 5460 h-1) after 1.5 h. By
comparison, the steric hindrance or electron-withdrawing
groups on the benzene rings have no obvious effect on the
catalytic activity of c-Au/IM-POP-2BrB.42
Conclusions
9
In summary, we have successfully developed a strategy for
fabricating a catalytic microfluidic reactor via coating Au/IM-
POP hybrid materials along the inner surface of a microfluidic
capillary. A variety of imidazolium-based porous organic
polymers are prepared from nucleophilic substitution
reactions between tetrakis[4-(1-imidazolyl)phenyl]methane
and bromo-functionalized linker molecules, e.g., 1,4-bis-
bromomethyl-benzene (2BrB), which and fully characterized
and may be used to support Au nanoparticles. The diameter
sizes of Au NPs gown within the IM-POP depend strongly on
the concentration of HAuCl4 solutions. The IM-POPs and
Au/IM-POPs show porosity and ability to uptake guest
molecules. The thickness of the Au/IM-POP coating on the
capillary is tuneable by changing the precursor concentration.
The capillary is further assembled into a microfluidic reactor
for the reduction of nitrobenzene derivatives into
corresponding anilines catalyzed by the IM-POP-supported Au
NPs. The microfluidic reactor with the Au/IM-POP-2BrB coating
exhibits significantly higher catalytic efficiency in terms of TOF
than the corresponding catalyst under batch conditions (6161
vs 647 h-1). These results demonstrate the significance of
improving the current catalytic activity of supported noble
metal catalysts by a combination with microfluidic technology.
The thickness controllable growth of the Au/IM-POP in the
capillary provides flexible amount of catalysts that can be
chosen. The significantly enhanced TOF exhibited by the
Au/IM-POP suggests the capillary confinement plays a crucial
role in increasing the efficiency of each catalytic site and
reducing the amount of noble metal catalysts.
10 T. Asai, A. Takata, Y. Ushiogi, Y. Iinuma, A. Nagaka and J.-i.
Yoshida, Chem. Lett., 2011, 40, 393-395.
11 A. Nagaki, K. Imai, S. Ishiuchi and J.-i Yoshisa, Angew. Chem. Int.
Ed., 2015, 54, 1914-1918.
12 B. Pieber and C. O. Kappe, Green Chem., 2013, 15, 320-324.
13 C.-C. Lee, G. Sui, A. Elizarov, C. J. Shu, Y.-S. Shin, A. N. Dooley,
J.
Stout, Science, 2005, 310, 1793-1796.
14 C. Audubert, O. J. G. Marin and H. Lebel, Angew. Chem. Int. Ed.,
2017, 56, 6294-6297
Huang,
A.
Daridon,
P.
Wyatt
and
D.
.
15 B. Picard, B. Gouilleux, T. Lebleu, J. Maddaluno, I. Chataigner, M.
Penhoat, F.-X. Felpin, P. Giraudeau and Julien Legros, Angew.
Chem. Int. Ed., 2017, 56, 7568-7572
16 H. Liu, J. Feng, J. Zhang, P. W. Miller, L. Chen and C.-Y.
Su, Chem. Sci., 2015, , 2292-2296.
.
6
17 R. Munirathinam, J. Huskens and W. Verboom, Adv. Synth.
Catal., 2015, 357, 1093-1123.
18 R. J. White, R. Luque, V. L. Budarin, J. H. Clark and D. J.
Macquarrie, Chem. Soc. Rev., 2009, 38, 481-494.
19 C. R. Kim, T. Uemura and S. Kitagawa, Chem. Soc. Rev.,
2016, 45, 3828-3845.
20 Q. Yang, Q. Xu and H.-L. Jiang, Chem. Soc. Rev., 2017, 46
,
4774-4808.
21 Y. Zhang and S. N. Riduan, Chem. Soc. Rev., 2012, 41, 2083-
2094.
22 J.-K. Sun, M. Antonietti and J. Yuan, Chem. Soc. Rev.,
2016, 45, 6627-6656.
23 H. Zhao, Y. Wang and R. Wang, Chem. Commun., 2014, 50
,
10871-10874.
24 P. Zhang, Z.-A. Qiao, X. Jiang, G. M. Veith and S. Dai, Nano
Lett., 2015, 15, 823-828.
25 A. Modak, M. Pramanik, S. Inagaki and A. Bhaumik, J. Mater.
Chem. A, 2014, 2, 11642-11650.
26 X. Gu, Z.-H. Lu, H.-L. Jiang, T. Akita and Q. Xu, J. Am. Chem.
Soc., 2011, 133, 11822-11825.
27 P. Kaur, J. T. Hupp and S. T. Nguyen, ACS Catal., 2011, 1, 819-
835.
Conflicts of interest
There are no conflicts to declare.
28 X. Zou, H. Ren and G. Zhu, Chem. Commun., 2013, 49, 3925-
3936.
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins