S. Cserényi et al. / Catalysis Communications 12 (2010) 14–19
19
[
9] A. Vargas, D. Ferri, N. Bonalumi, T. Mallat, A. Baiker, Angew. Chem. Int. Ed. 46
2007) 3905–3908.
10] Z. Ma, I. Lee, F. Zaera, J. Am. Chem. Soc. 129 (2007) 16083–16090.
[11] M.A. Laliberte, S. Lavoie, B. Hammer, G. Mahieu, P.H. McBreen, J. Am. Chem. Soc.
30 (2008) 5386–5387.
during the reductive regeneration of the catalyst at 323 K the chem-
isorbed cinchonas cannot be removed (see section 2.2, Tables 1–3).
When the solvent contained AcOH one may not neglect the formation
(
[
1
from the Pt/Al
MS [22,44–46] and their effect on the hydrogenation. The continuous
reconstruction of the surface of the Pt/Al under the conditions of
2 3
O of acetates and other compounds identified by ESI-
[
[
12] T.A. Martinek, T. Varga, F. Fülöp, M. Bartók, J. Catal. 246 (2007) 266–276.
13] I. Busygin, V. Nieminen, A. Taskinen, J. Sinkkonen, E. Toukoniitty, R. Sillanpää, D.
Yu. Murzin, R. Leino, J. Org. Chem. 73 (2008) 6559–6569.
2 3
O
the Orito reaction [28,33–35,43,47–49] may affect the sense of the
enantioselection, which besides the unexpected experimental results
presented in Fig. 1c,d makes necessary further investigation of the
phenomenon.
[14] T.A. Martinek, T. Varga, K. Balázsik, Gy. Szőllősi, F. Fülöp, M. Bartók, J. Catal. 255
2008) 296–303.
(
[
15] A. Urakawa, D.M. Meier, H. Rugger, A. Baiker, J. Phys. Chem. A 112 (2008)
7250–7255.
[16] I. Lee, Z. Ma, S. Kaneko, F. Zaera, J. Am. Chem. Soc. 130 (2008) 14597–14604.
[
[
17] Gy. Szőllősi, Sz. Cserényi, F. Fülöp, M. Bartók, J. Catal. 260 (2008) 245–253.
18] I. Busygin, A. Taskinen, V. Nieminen, E. Toukoniitty, T. Stillger, R. Leino, D.Y.
Murzin, J. Am. Chem. Soc. 131 (2009) 4449–4462.
5
. Conclusion
[
[
[
[
19] F. Gao, L. Chen, M. Garland, J. Catal. 238 (2006) 402–411.
20] Y. Zhao, F. Gao, L. Chen, M. Garland, J. Catal. 221 (2004) 274–284.
21] D.M. Meier, D. Ferri, T. Mallat, A. Baiker, J. Catal. 248 (2007) 68–76.
22] M. Bartók, Gy. Szőllősi, K. Balázsik, T. Bartók, J. Catal. 205 (2002) 168–176.
A large variety of hypothetic structures of surface ICs potentially
responsible for enantiodifferentiation (ED) are shown in Scheme 2
for EP, MBF and TFAP [3,11,18,24,28,50–57]. In addition to kinetic
studies, various spectroscopic techniques have also been successfully
applied to study the IC structure and the mechanism of the Orito
reaction [11–13,39,40], particularly to find explanations for the
unexpected inversions detected in these systems (see review in [8]).
Direct experimental identification of the ICs presented in Scheme 2
under the conditions of the Orito reaction is at present impossible.
Complexes A and B, and to a lesser extent complex C are generally
accepted for the interpretation of the enantioselective hydrogenation
of activated ketones in protic solvents. In the case of non-protic
solvents, complexes of type D cannot be excluded either (in addition
to A and B). The role of complexes E, G, and H in ED has been proposed
recently. Type F complexes may develop on the most active surface
atoms (kink and adatom) by irreversible adsorption (chemisorption).
Pt–cinchona complexes produced by chemisorption may have an
important role in the phenomenon described in ref. [19]. They are
converted to products on surface sites not identical with the original
ones, formed after desorption at 323 K, via ICs with structures
determined by the structure of the ketone to be hydrogenated.
As a final note: what the authors defined as “a new origin for
stereo-differentiation in the Orito reaction” in [19] is indeed a new
phenomenon; in our opinion, however, it can hardly be considered to
be an Orito reaction, since hydrogenation takes place after desorption
of the chiral modifier at 323 K, i.e. in the absence of the modifier.
[23] K. Balázsik, I. Bucsi, Sz. Cserényi, Gy. Szőllősi, M. Bartók, J. Mol. Catal. A: Chem. 280
2008) 87–95.
24] K. Szőri, K. Balázsik, Sz. Cserényi, Gy. Szőllősi, M. Bartók, Appl. Catal. A: Gen. 362
2009) 178–184.
[25] Gy. Szőllősi, Sz. Cserényi, K. Balázsik, F. Fülöp, M. Bartók, J. Mol. Catal. A: Chem. 305
2009) 155–160.
26] T. Varga, K. Felföldi, P. Forgó, M. Bartók, J. Mol. Catal. A: Chem. 216 (2004)
81–187.
(
[
(
(
[
1
[27] Y. Orito, S. Imai, S. Niwa, J. Chem. Soc. Jpn. (1980) 670–672.
[28] K. Balázsik, M. Bartók, J. Catal. 224 (2004) 463–472.
[
[
[
29] L. Balazs, T. Mallat, A. Baiker, J. Catal. 233 (2005) 327–332.
30] M. Bartók, M. Sutyinszki, K. Balázsik, Gy. Szőllősi, Catal. Lett. 100 (2005) 161–167.
31] M. Garland, H.U. Blaser, J. Am. Chem. Soc. 112 (1990) 7048–7050.
[32] Gy. Szőllősi, Sz. Cserényi, M. Bartók, Catal. Lett. 134 (2010) 264–269.
[33] D. Ferri, T. Bürgi, J. Am. Chem. Soc. 123 (2001) 12074–12084.
[34] J. Kubota, F. Zaera, J. Am. Chem. Soc. 123 (2001) 11115–11116.
[35] A.F. Carley, M.K. Rajumon, M.W. Roberts, P.B. Wells, J. Chem. Soc. Faraday Trans. 91
(1995) 2167–2172.
[36] I. Bakos, S. Szabó, M. Bartók, E. Kálmán, J. Electroanal. Chem. 532 (2002) 113–119.
[37] M. von Arx, T. Mallat, A. Baiker, Top. Catal. 19 (2002) 75–87.
[38] U. Böhmer, F. Franke, K. Morgenschweis, T. Bieber, W. Reschetilowski, Catal. Today
60 (2000) 167–173.
[
[
39] V. Morawsky, U. Prüsse, L. Witte, K.D. Vorlop, Catal. Commun. 1 (2000) 15–20.
40] M. Bartók, Gy. Szőllősi, K. Balázsik, T. Bartók, J. Mol. Catal. A: Chem. 177 (2002)
2
99–305.
[41] E. Schmidt, A. Vargas, T. Mallat, A. Baiker, J. Am. Chem. Soc. 131 (2009)
2358–12367.
1
[
[
42] E. Schmidt, T. Mallat, A. Baiker, J. Catal. 272 (2010) 140–150.
43] D.M. Meier, T. Mallat, D. Ferri, A. Baiker, J. Catal. 244 (2006) 260–263.
[44] M. Bartók, P.T. Szabó, T. Bartók, Gy. Szőllősi, K. Balázsik, Rapid Commun. Mass
Spectrom. 15 (2001) 65–69.
[
[
45] M. Bartók, K. Balázsik, Gy. Szőllősi, T. Bartók, Catal. Commun. 2 (2001) 269–272.
46] I. Bucsi, Gy. Szőllősi, T. Bartók, M. Bartók, React. Kinet. Catal. Lett. 85 (2005)
361–366.
Acknowledgements
[
[
47] Z. Ma, F. Zaera, J. Am. Chem. Soc. 128 (2006) 16414–16415.
48] M. Wahl, M. von Arx, T.A. Jung, A. Baiker, J. Phys. Chem.
1777–21782.
49] R. Hess, F. Krumeich, T. Mallat, A. Baiker, Catal. Lett. 92 (2004) 141–148.
B 110 (2006)
Financial support by the Hungarian National Science Foundation
OTKA Grant K 72065) is highly appreciated. The project was
2
(
[
supported by the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences (Gy. Sz.).
[50] C. Exner, A. Pfaltz, M. Studer, H.U. Blaser, Adv. Synth. Catal. 345 (2003)
253–1260.
1
[
[
51] M. Bartók, Curr. Org. Chem. 10 (2006) 1533–1567.
52] P.B. Wells, R.P.K. Wells, in: D.E. De Vos, I.F.J. Vankelecom, P.A. Jacobs (Eds.), In
Chiral Catalyst Immobilization and Recycling, Wiley-VCH, Weinheim, 2000,
p. 123.
References
[
[
[
[
[
[
[
[
1] Y. Orito, S. Imai, S. Niwa, J. Chem. Soc. Jpn. (1979) 1118–1120.
2] Y. Orito, S. Imai, S. Niwa, N.G. Hung, J. Synth. Org. Chem. 37 (1979) 173–176.
3] T. Mallat, E. Orglmeister, A. Baiker, Chem. Rev. 107 (2007) 4863–4890.
4] H.U. Blaser, M. Studer, Acc. Chem. Res. 40 (2007) 1348–1356.
5] F. Zaera, J. Phys. Chem. C 112 (2008) 16196–16203.
6] M. Bartók, Chem. Rev. 110 (2010) 1663–1705.
7] E. Tálas, J.L. Margitfalvi, Chirality 22 (2009) 3–15.
8] F. Hoxha, L. Konigsmann, A. Vargas, D. Ferri, T. Mallat, A. Baiker, J. Am. Chem. Soc.
[53] G. Vayner, K.N. Houk, Y.K. Sun, J. Am. Chem. Soc. 126 (2004) 199–203.
[54] K. Szőri, K. Balázsik, K. Felföldi, M. Bartók, J. Catal. 241 (2006) 149–154.
[55] S. Lavoie, M.A. Laliberte, I. Temprano, P.H. McBreen, J. Am. Chem. Soc. 128 (2006)
7588–7593.
[56] R.L. Augustine, S.K. Tanielyan, L.K. Doyle, Tetrahedron Asymmetr. 4 (1993)
1803–1827.
[57] M. von Arx, T. Bürgi, T. Mallat, A. Baiker, Chem. Eur. J. 8 (2002) 1430–1437.
129 (2007) 10582–10590.