LETTER
DNA Damage by Carcinogenic Arylamines
2413
(
9) Lakshman, M. K.; Hilmer, J. H.; Martin, J. Q.; Keeler, J. C.;
Dinh, Y. Q. V.; Ngassa, F. N.; Russon, L. M. J. Am. Chem.
Soc. 2001, 123, 7779.
(
(
10) (a) De Riccardis, F.; Bonala, R. R.; Johnson, F. J. Am. Chem.
Soc. 1999, 121, 10453. (b) De Riccardis, F.; Johnson, F.
Org. Lett. 2000, 2, 293.
11) Schoffers, E.; Olsen, P. D.; Means, J. C. Org. Lett. 2001, 3,
4221.
(
(
12) Meier, C.; Gräsl, S. Synlett 2002, 802.
13) Guy, A.; Duplaa, A.-M.; Harel, P.; Téoule, R. Helv. Chim.
Acta 1988, 71, 1566.
(14) Markiewicz, W. T.; Samek, J.; Smrt, J. Tetrahedron Lett.
1
980, 21, 4523.
6
(
15) N -Benzoyl-8-N-(4-methoxyphenylamino)-3¢,5¢-O-[1,1,3,3-
tetrakis(isopropyl)-1,3-disiloxanediyl]-2¢-deoxyadenosine
6
(
[
7a) and N -benzoyl-8-N-(4-aminobiphenyl)-3¢,5¢-O-
1,1,3,3-tetrakis(isopropyl)-1,3-disiloxanediyl]-2¢-deoxy-
adenosine (7b): N -Bz-8-bromo-3¢,5¢-O-(TIPDS)-2¢-dA 6
6
Figure
2
Enzyme degradation assay of the oligonucleotide
ATCTT(A*)AGATG
(500 mg, 0.87 mmol), Cs CO (426 mg, 1.31 mmol), tris(di-
2
3
benzylideneacetone)dipalladium(0) [Pd (dba) ; 80.0 mg,
2
3
8
7.0 mmol], racemic-2,2¢-bis(diphenylphosphino)-1,1¢-
binaphthyl (BINAP; 163 mg, 0.26 mmol) and p-anisidine
4c; 215 mg, 1.74 mmol) or 4-aminobiphenyl (4b; 295 mg,
.74 mmol) were solubilized in anhyd 1,2-dimethoxyethane
In conclusion, we have developed a complete synthesis
of C8-arylamine-2¢-deoxyadenosine phosphoramidites
(
1
1
0a and 10b that are suitable for standard automated
DNA-synthesis. Due to this method site-selective in-
corporation of such adducts could be performed in any se-
quence for the first time. Now, the effects of chemically
modified dA-bases within oligonucleotides can be studied
and compared to the effects of the corresponding dG
adducts. This may provide new significant insights into
the importance of this type of DNA damage for the possi-
ble induction of the chemical carcinogenesis. Moreover,
fully unprotected C8-arylamine-dA adducts were pre-
pared which can be used in analytical studies as reference
compounds. Work along this field is currently underway
in our laboratories.
(30 mL) in an inert gas atmosphere and stirred at 90 °C until
the reaction was complete (TLC analysis). After cooling to
r.t., sat. NaHCO solution (1 mL) was added. After addition
3
of brine (10 mL) the layers were separated and the aqueous
layer was extracted with EtOAc (3 × 10 mL). The combined
organic layers were washed with brine (3 × 10 mL) and once
with a mixture of brine (10 mL) and H O (2 mL). The
2
organic layer was dried (Na SO ) and the solvent was
2
4
removed in vacuo. Purification by chromatography on silica
gel, eluting with 20% EtOAc in hexane afforded 7a (374 mg,
0.61 mmol; 70%) and 7b (345 mg, 0.52 mmol; 60%) as
light-yellow foams.
1
(
16) 7a: H NMR (400 MHz, CDCl ): d = 8.16 (s, 1 H), 7.48 (m,
3
2
H), 7.41 (br s, 1 H), 6.88 (m, 2 H), 6.31 (dd, J = 3.8, 7.8
Hz, 1 H), 5.34 (br s, 2 H), 4.90 (dd, J = 7.9, 15.2 Hz, 1 H),
.16 (dd, J = 3.4, 9.2 Hz, 1 H), 3.98 (dd, J = 5.0, 12.5 Hz, 1
4
Acknowledgment
H), 3.90 (ddd, J = 3.4, 4.9, 7.0 Hz, 1 H), 3.79 (s, 3 H), 3.06
(ddd, J = 3.6, 8.1, 13.4 Hz, 1 H), 2.59 (ddd, J = 7.9, 13.4 Hz,
This work was supported by the Deutsche Forschungsgemeinschaft
1
3
(DFG; ME 1161/5-1).
1 H), 0.89–1.13 (m, 28 H). C NMR (101 MHz, CDCl ):
3
d = 155.8, 152.5, 149.4, 132.5, 121.5, 117.4, 114.5, 85.3,
8
3.8, 70.5, 61.9, 55.7, 38.8, 17.0–17.6, 12.6–13.5. HRMS
References and Notes
+
(
FAB): m/z [M + H] calcd for C H N O Si : 615.3147;
29 46 6 5 2
1
found: 615.3155. 7b: H NMR (400 MHz, CDCl ): d = 8.19
3
(
(
(
1) Garner, R. C. Mutat. Res. 1998, 402, 67.
2) Neumann, H. G. J. Cancer Res. Clin. Oncol. 1986, 112, 100.
3) Beland, F. A.; Kadlubar, F. F. Environ. Health Perspect.
(
(
(
s, 1 H), 7.78 (br s, 1 H), 7.69 (m, 2 H), 7.58 (m, 4 H), 7.44
m, 2 H), 7.33 (m, 1 H), 6.35 (dd, J = 3.8, 7.5 Hz, 1 H), 5.59
s, 2 H), 4.88 (dd, J = 7.9, 15.2 Hz, 1 H), 4.16 (dd, J = 3.6,
1985, 62, 19.
1
2.6 Hz, 1 H), 4.04 (dd, J = 4.8, 12.5 Hz, 1 H), 3.95 (ddd,
(4) (a) Guengerich, F. P. Drug Metab. Rev. 2002, 34, 607.
J = 3.0, 4.4, 7.3 Hz, 1 H), 3.07 (ddd, J = 3.6, 8.0, 13.4 Hz),
(
(
b) Meier, C.; Boche, G. Chem. Ber. 1990, 123, 1691.
c) Famulok, M.; Boche, G. Angew. Chem., Int. Ed. Engl.
2
.59 (ddd, J = 7.8, 13.4 Hz, 1 H), 0.91–1.12 (m, 28 H).
1
3
C NMR (101 MHz, CDCl ): d = 156.7, 152.4, 149.7, 148.3,
3
1989, 28, 468; Angew. Chem. 1989, 101, 470.
140.9, 132.5, 121.5, 117.4, 114.5, 85.3, 83.8, 70.5, 61.9,
(
5) Tureky, R. J.; Rossi, S. C.; Welti, D. H.; Lay, J. O.;
Kadlubar, F. F. Chem. Res. Toxicol. 1992, 5, 479.
55.7, 38.8, 17.0–17.6, 12.6–13.5. HRMS (FAB): m/z [M +
+
H] calcd for C H N O Si : 661.3354; found: 661.3377.
3
4
48
6
4
2
(
(
6) Tureky, R. J.; Markovic, J. Chem. Res. Toxicol. 1994, 7, 752.
7) Meier, C.; Gräsl, S.; Detmer, I.; Marx, A. Nucleosides,
Nucleotides Nucleic Acids 2005, 24, 691.
6
(
17) N -Benzoyl-8-N-(4-methoxyphenylamino)-5¢-O-dimeth-
oxytrityl-2¢-deoxyadenosine-3¢-yl-b-cyanoethyl-N,N¢-
6
diisopropylphosphoramidite (10a) and N -benzoyl-8-N-(4-
aminobiphenyl)-5¢-O-dimethoxytrityl-2¢-deoxy-adenosine-
(
8) (a) Abuaf, P.; Hingerty, B. E.; Broyde, S.; Grunberger, D.
Chem. Res. Toxicol. 1995, 8, 369. (b) Shibutani, S.; Suzuki,
N.; Grollman, A. P. Biochemistry 1998, 37, 12034.
3¢-yl-b-cyanoethyl-N,N¢-diisopropylphosphor-amidite
6
(
10b): N -Bz-8-N-(4-methoxyphenylamino)-5¢-O-DMTr-2¢-
(
c) Shibutani, S.; Fernandes, A.; Suzuki, N.; Zhou, L.;
Johnson, F.; Grollman, A. P. J. Biol. Chem. 1999, 274,
7433.
6
dA (150 mg, 0.19 mmol) and N -Bz-8-N-(4-aminobi-
phenyl)-5¢-O-DMTr-2¢-dA (150 mg, 0.18 mmol), respec-
tively, were dissolved in anhydrous CH Cl (3 mL) and
2
2
2
anhydrous MeCN (3 mL) in an inert gas atmosphere and
Synlett 2006, No. 15, 2411–2414 © Thieme Stuttgart · New York