Journal of the American Chemical Society
Communication
has some precedent in the literature, although its properties
and applications remain unexplored;20 a related ligand
exchange using MoCl5 has recently been reported.21 When
we mixed preprepared titanium complex 4 and allyl alcohol 2a
in HFIP, a new species 5, derived from the substitution of one
hexafluoroisopropoxy moiety for an allylalkoxy group, was
detected by NMR spectroscopy (Scheme 2C, see Supporting
Information for further details). We note that alkoxy ligand
exchange at titanium is likely to be easy to accomplish and
reversible.22 Finally, the addition of homoallyl alcohol 1a to
this reaction mixture led to the formation of product 3a,
presumably via an electrophile-triggered cyclization.
Finally, selective functionalization of the heterocyclic
products 3 offers an opportunity to install groups that can
be used to manipulate these highly functionalized heterocycles.
Our reaction toolbox includes oxidation protocols, for example
ozonolysis of the remaining alkene afforded an aldehyde
(Scheme 3a, 7). Moreover, the PMP group can be oxidized to
further functionalization allows us to install useful functional
groups.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Full experimental details (PDF)
Copies of spectral data (PDF)
Crystallographic data (CIF)
AUTHOR INFORMATION
Corresponding Author
■
ORCID
Notes
a
Scheme 3. Selective THF Product Functionalization
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the European Union and the European Commission
- Seventh Framework People Programme (Marie Curie
Actions) for financial support (IC) and Diamond Light Source
for an award of beamtime (MT13639).
REFERENCES
■
(1) Colomer, I.; Coura Barcelos, R.; Donohoe, T. J. Angew. Chem.,
Int. Ed. 2016, 55, 4748−4752.
(2) Colomer, I.; Batchelor-McAuley, C.; Odell, B.; Donohoe, T. J.;
Compton, R. G. J. Am. Chem. Soc. 2016, 138, 8855−8861.
(3) Colomer, I.; Coura Barcelos, R.; Christensen, K.; Donohoe, T. J.
Org. Lett. 2016, 18, 5880−5883.
(4) Baldwin, J. E.; Cutting, J.; Dupont, W.; Kruse, L.; Silberman, L.;
Thomas, R. C. J. Chem. Soc., Chem. Commun. 1976, 736−738.
(5) Alabugin, I. V.; Gilmore, K. Chem. Commun. 2013, 49, 11246−
11250.
(6) Ishibashi, H.; Sato, T.; Ikeda, M. Synthesis 2002, 2002, 695−713.
(7) Ichikawa, J.; Lapointe, G.; Iwai, Y. Chem. Commun. 2007, 2698−
2700. and references therein.
(8) Knight, D. W. Electrophile-induced 5-endo cyclizations. In
Progress in Heterocyclic Chemistry; Gribble, G. W., Gilchrist, T. L.,
Eds.; Elsevier, 2002; Vol. 14, Chapter 2, pp 19−51.
a
(i) O3, CH2Cl2, −78 °C/DMS; (ii) RuCl3 (2.5−5 mol %), NaIO4,
Na2HPO4, MeCN:CCl4; (iii) H2, 10 wt % Pd/C, EtOAc, 0 °C; (iv)
1.1−1.7 equiv. LDA, 1−1.5 equiv. R2−X, THF, −78 °C.
(9) For alternative methods for making rings and a new C−C bond
at the same time, see: (a) Saito, A.; Matsushita; Kaneko, H. Chem.
Lett. 1983, 12, 729−732. (b) Bergeron, S.; Brigaud, T.; Foulard, G.;
Plantier-Royon, R.; Portella, C. Tetrahedron Lett. 1994, 35, 1985−
1988. (c) Protti, S.; Fagnoni, M.; Albini, A. J. Am. Chem. Soc. 2006,
a carboxylic acid when attached directly to the heterocycle
(Scheme 3a, 8), or when derived from the cation electrophile
(Scheme 3a, 9). Alternatively, hydrogenation of the double
bond in these products gave saturated derivatives (see 6a,b in
Scheme 3b). The diastereoselective transformation of 3ai to 6c
is noteworthy, creating a new stereogenic center during
reduction. Finally, stereoselective alkylation or acylation can
be performed on the γ-butyrolactones (Scheme 3c, 10a−c).
These straightforward and stereoselective reactions performed
using heterocycles 3 exemplify the rich potential of these
compounds for synthetic organic chemistry.
In conclusion, we have developed a new method for the
stereoselective preparation of valuable oxygen-containing
heterocyclic compounds triggered by the use of alcohols as
alkylating agents. HFIP solvent is unique in promoting the
heterocyclization and allowing formation of a C−C and C−O
bond at the same time. Moroever, enantioenriched products
can be obtained from simple chiral starting materials and
́
128, 10670−10671. (d) Mullen, C. A.; Gagne, M. R. J. Am. Chem. Soc.
2007, 129, 11880−11881. (e) Lin, R.; Sun, H.; Yang, C.; Shen, W.;
Xia, W. Chem. Commun. 2015, 51, 399−401. (f) Shimogaki, M.;
Fujita, M.; Sugimura, T. Angew. Chem., Int. Ed. 2016, 55, 15797−
15801. (g) Jian, W.; Ge, L.; Jiao, Y.; Qian, B.; Bao, H. Angew. Chem.,
Int. Ed. 2017, 56, 3650−3654.
(10) For Prins type processes, see: (a) Yadav, J. S.; Borkar, P.;
Chakravarthy, P. P.; Reddy, B. V. S.; Sarma, A. V. S.; Basha, S. J.;
Sridhar, B.; Gree, R. J. Org. Chem. 2010, 75, 2081−2084. (b) Reddy,
B. V. S.; Borkar, P.; Yadav, J. S.; Reddy, P. P.; Kunwar, A. C.; Sridhar,
B.; Gree, R. Org. Biomol. Chem. 2012, 10, 1349−1358. (c) Srivastava,
N.; Reddy, P. P.; Sridhar, B.; Reddy, B. V. S. Synlett 2013, 24, 1263−
1268. (d) Reddy, B. V. S.; Reddy, M. R.; Sridhar, B.; Reddy, C. S.
Tetrahedron Lett. 2014, 55, 4110−4113.
́
(11) For recent reviews, see: (a) Baeza, A.; Najera, C. Synthesis
2013, 46, 25−34. (b) Dryzhakov, M.; Richmond, E.; Moran, J.
Synthesis 2016, 48, 935−959.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX