Page 7 of 8
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
Addition of Metalloid Hydrides to Alkynes: Hydrometallation with
Steps in the Synthesis of Functionalized Amino Alcohols and
Heterocycles. Eur. J. Org. Chem. 2007, 2839; (f) Jena, N.; Kazmaier,
Boron, Silicon, and Tin. Synthesis 2005, 853. (c) Smith, N. D.;
Mancuso, J.; Lautens, M. Metal-Catalyzed Hydrostannations. Chem.
Rev. 2000, 100, 3257.
U. Synthesis of Stannylated Allyl‐ and Vinylphosphonates via
Molybdenum‐Catalyzed Hydrostannations. Eur. J. Org. Chem. 2008,
5
See ref 3 and the follow example: Rice, M. B.; Whitehead, S. L.;
Horvath, C. M.; Muchnij, J. A.; Maleczka, R. E., Jr. The Regiochemical
Influence of Oxo-Substitution in Palladium-Mediated
3
852. (g) Lin, H.; Kazmaier, U. Molybdenum‐Catalyzed
α‐Hydrostannations of Propargylamines as the Key Step in the
Synthesis of N‐Heterocycles. Eur. J. Org. Chem. 2009, 1221.
Hydrostannations of 1-Alkynes. Synthesis 2001, 1495.
6
For selected examples, see: (a) Ichinose, Y. Oda, H. Oshima, K.
Utimoto, K. Palladium Catalyzed Hydrostannylation and
Hydrogermylation of Acetylenes. Bull. Chem. Soc. Jpn. 1987, 60,
1
2
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Hamze, A.; Veau, D.; Provot, O.; Brion, J.-D.; Alami, M. Palladium-
Catalyzed Markovnikov Terminal Arylalkynes Hydrostannation:
Application to the Synthesis of 1,1-Diarylethylenes. J. Org. Chem.
3
468. (b) Zhang, H. X. Guibÿ, F. Balavoine, G. Palladium Catalyzed
Hydrostannation of Alkynes and Palladium-Catalyzed
2
009, 74, 1337.
Hydrostannolysis of Propargyl or Propargyloxycarbonyl Derivatives of
Various Functional Groups. Tetrahedron Lett. 1988, 29, 619. (c)
Zhang, H. X.; Guibe, F.; Balavoine, G. Palladium- and Molybdenum-
Catalyzed Hydrostannation of Alkynes. A Novel Access to Regio- and
Stereodefined Vinylstannanes. J. Org. Chem. 1990, 55, 1857. (d)
Maleczka, R. E. Jr.; Ghosh, B.; Gallagher, W. P.; Baker, A. J.; Muchnij,
J. A.; Szymanski, A. L. Non-Pd Transition Metal-catalyzed
13
For a relevant report with only 3 demonstrated examples, see:
Rummelt, S. M.; Fürstner, A. Ruthenium-Catalyzed trans-Selective
Hydrostannation of Alkynes. Angew. Chem. Int. Ed. 2014, 53, 3626.
1
4
(
a) Kamijo, S.; Yamamoto, Y. In Multimetallic Catalysts in Organic
Synthesis; Shibasaki, M., Yamamoto, Y., Eds.; Wiley-VCH: New York,
004; Chapter 1. (b) D. C. Powers, T. Ritter, Bimetallic Redox Synergy
2
in Oxidative Palladium Catalysis. Acc. Chem. Res. 2012, 45, 840. (c)
N. P. Mankad, Selectivity Effects in Bimetallic Catalysis. Chem. Eur.
J. 2016, 22, 5822; (d) D. R. Pye, N. P. Mankad, Bimetallic catalysis for
C–C and C–X coupling reactions. Chem. Sci. 2017, 8, 1705; (e) I. G.
Powers, C. Uyeda, Metal−Metal Bonds in Catalysis. ACS Catal. 2017,
3
Hydrostannations: Bu SnF/PMHS as a Tin Hydride Source.
Tetrahedron 2013, 69, 4000.
7
(a) Darwish, A.; Lang, A.; Kim, T.; Chong, J. M. The Use of
Phosphine Ligands to Control the Regiochemistry of Pd-Catalyzed
Hydrostannations of 1-Alkynes: Synthesis of (E)-1-Tributylstannyl-1-
alkenes. Org. Lett, 2008, 10, 861. (b) Oderinde, M. S.; Froese, R. D. J.;
Organ, M. G. 2,2’-Azobis(2-methylpropionitrile)-Mediated Alkyne
Hydrostannylation: Reaction Mechanism. Angew. Chem. Int. Ed. 2013,
52, 11334. (c) Gupta, S.; Do, Y.; Lee, J. H.; Lee, M.; Han, J.; Rhee, Y.
H.; Park, J. Novel Catalyst System for Hydrostannation of Alkynes.
Chem. Eur. J. 2014, 20, 1267. (d) Mandla, K. A. Moore, C. E.
Rheingold, A. L. Figueroa, J. S. Regioselective Formation of (E)-β-
Vinylstannanes with a Topologically Controlled Molybdenum-Based
Alkyne Hydrostannation Catalyst. Angew. Chem. Int. Ed. 2018, 57,
6853.
7
, 936.
1
5
Banerjee, S.; Karunananda, M. K.; Bagherzadeh, S.; Jayarathne, U.;
Parmelee, S. R.; Waldhart, G. W.; Mankad, N. P. Synthesis and
Characterization of Heterobimetallic Complexes with Direct Cu–M
Bonds (M = Cr, Mn, Co, Mo, Ru, W) Supported by N-Heterocyclic
Carbene Ligands: A Toolkit for Catalytic Reaction Discovery. Inorg.
Chem. 2014, 53, 11307.
1
6
For our group’s work on heterobimetallic catalysis, see: (a)
Mazzacano, T. J.; Mankad, N. P. Base Metal Catalysts for
Photochemical C-H Borylation That Utilize Metal-Metal
Cooperativity. J. Am. Chem. Soc. 2013, 135, 17258. (b) Karunananda,
M. K.; Mankad, N. P. E-Selective Semi-Hydrogenation of Alkynes by
Heterobimetallic Catalysis. J. Am. Chem. Soc. 2015, 137, 14598. (c)
8
Shibata, I.; Suwa, T.; Ryu, K.; Baba, A. Selective α-Stannylated
Addition of Di-n-butyliodotin Hydride Ate Complex to Simple
Aliphatic Alkynes. J. Am. Chem. Soc. 2001, 123, 4101.
Bagherzadeh, S.; Mankad, N. P. Catalyst Control of Selectivity in CO
2
9
Yoshida, H.; Shinke, A.; Kawanoa Y.; Takakia, K. Copper-Catalyzed
Reduction Using a Tunable Heterobimetallic Effect. J. Am. Chem.
Soc. 2015, 137, 10898. (d) Pye, D. R.; Mankad, N. P. Cu/Mn Bimetallic
Catalysis Enables Carbonylative Suzuki-Miyaura Coupling with
Unactivated Alkyl Electrophiles. Chem. Sci. 2017, 8, 4750. For a recent
account, see: (e) Mankad, N. P. Selectivity Effects in Bimetallic
Catalysis. Chem. Commun. 2018, 54, 1291.
α-Selective Hydrostannylation of Alkynes for the Synthesis of
Branched Alkenylstannanes. Chem. Commun. 2015, 51, 10616.
1
0
(a) Hibino, J.; Matsubara, S.; Morizawa, Y.; Oshima, K.; Nozaki, H.
Regioselective Stannylmetalation of Acetylenes in the Presence of
Transition-metal Catalyst. Tetrahedron Lett. 1984, 25, 2151; (b)
Matsubara, S.; Hibino, J.; Morizawa, Y.; Oshima, K.; Nozaki, H.
Regio- and Stereo-selective Synthesis of Vinylstannanes. Transition-
metal Catalyzed Stannylmetalation of Acetylenes and Conversion of
Enol Triflates and Vinyl Iodides into Vinylstannanes. J. Organomet.
Chem. 1985, 285, 163; (c) Sharma, S.; Oehlschlager, A. C. Control of
Regiochemistry in Bismetallation of 1-Decyne. Tetrahedron Lett.
1986, 27, 6161; (d) Sharma, S.; Oehlschlager, A. C. Regioselective
Synthesis and Cross Coupling Reactions of 1,2-Borostannyl-1-alkenes.
Tetrahedron Lett. 1988, 29, 261; (e) Sharma, S.; Oehlschlager, A. C.
Scope and Mechanism of Stannylalumination of 1-Alkynes. J. Org.
Chem. 1989, 54, 5064.
1
7
Forster, F.; Lopez, V. M. R.; Oestreich, M. Catalytic
Dehydrogenative Stannylation of C(sp)–H Bonds Involving
Cooperative Sn–H Bond Activation of Hydrostannanes. J. Am. Chem.
Soc. 2018, 140, 1259.
1
8
King, R. B. Some Applications of Metal Carbonyl Anions in the
Synthesis of Unusual Organometallic Compounds. Acc. Chem. Res.
970, 3, 417.
1
19
(a) Barbero, A.; Cuadrado, P.; Fleming, I.; González, A. M.; Pulido, F.
J. The Stannyl-Cupration of Acetylenes and the Reaction of the
Intermediate Cuprates with Electrophiles as a Synthesis of Substituted
Vinylstannanes. J. Chem. Soc., Chem. Commun. 1992, 351. (b) Barbero, A.;
Cuadrado, P.;Fleming, I.; González, A. M.; Pulido, F. J.; Rubio, R. Stannyl-
cupration of Acetylenes and the Reaction of the Intermediate Cuprates with
Electrophiles as a Synthesis of Substituted Vinylstannanes. J. Chem. Soc.,
Perkin Trans.1, 1993, 1657. (c) Barbero A.; Pulido, F. J. Allylstannanes
and Vinylstannanes from Stannylcupration of C–C Multiple Bonds.
Recent Advances and Applications in Organic Synthesis. Chem. Soc.
Rev. 2005, 34, 913.
1
1
(a) Kazmaier, U.; Schauss, D.; Pohlman, M. Mo(CO)
3
(CN-t-
Bu) (MoBI ), New Efficient Catalyst for Regioselective
3
3
a
Hydrostannations. Org. Lett. 1999, 1, 1017; (b) Kazmaier, U.;
Pohlman, M.; Schauß, D. Regioselective Hydrostannations with
t
Mo(CO)
3
(CN Bu)
3
(MoBI
3
) as a New, Efficient Catalyst. Eur. J. Org.
Chem. 2000, 2761; (c) Braune, S.; Kazmaier, U. Regioselective
Hydrostannations Catalyzed by Molybdenum Isonitrile Complexes. J.
Organomet. Chem. 2002, 641, 26; (d) Braune, S.; Pohlman, M.;
Kazmaier, U. Molybdenum-Catalyzed Stannylations as Key Steps in
Heterocyclic Synthesis. J. Org. Chem. 2004, 69, 468; (e) Lin, H.;
20
Singer, R. D.; Hutzzinger, M. W.; Oehlschlager, A. C. Additions of
CuCN-Derived Stannylcuprates to Terminal Alkynes: A Comparative
Spectroscopic and Chemical Study. J. Org. Chem. 1991, 56, 4933.
Kazmaier, U. Regioselective Mo‐Catalyzed Hydrostannations as Key
ACS Paragon Plus Environment