Paper
NJC
4 (a) T. Ishiyama, H. Kizaki, T. Hayashi, A. Suzuki and N. Miyaura,
J. Org. Chem., 1998, 63, 4726–4731; (b) M. V. Khedkar,
P. J. Tambade, Z. S. Qureshi and B. M. Bhanage, Eur. J. Org.
Chem., 2010, 6981–6986.
5 (a) M. Medio-Simon, C. Mollar, N. Rodriguez and
G. Asensio, Org. Lett., 2005, 7, 4669–4672; (b) P. Prediqer,
A. V. Moro, C. W. Noqueira, L. Saveqnaqo, P. H. Menezes,
J. B. Rocha and G. Zeni, J. Org. Chem., 2006, 71, 3786–3792.
6 B. M. Okeefe, N. Simmons and S. F. Martin, Org. Lett., 2008,
10, 5301–5304.
was recycled in the carbonylative cross-coupling reactions of
4-iodoacetophenone with phenylboronic acid. Fe3O4@PANI–PdII
still maintained high activity and selectivity after being reused
for five runs. The weight percentage of Pd in the reused catalyst,
as determined by atomic absorption spectroscopic (AAS) anal-
ysis, was 3.9 wt%.
Conclusions
In summary, we have developed a novel and practical hetero-
geneous catalyst for the Suzuki carbonylative coupling reaction
under mild reaction conditions. This novel Pd catalyst exhibits
higher activity for the Suzuki carbonylative coupling reaction
than many other heterogeneous catalysts, such as MCM-41–2P–PdII,
Pd/C, MCM-41–2N–PdII, Fe3O4@SiO2–SH–PdII, and ImmPd–IL,
reported in literature. Furthermore, a significant reduction in
the formation of the direct coupling product could be observed
when Fe3O4@PANI–PdII was used to catalyze the Suzuki carbonyla-
tive coupling reaction. This catalyst can be reused five times without
significant loss in catalytic activity. In addition, the Fe3O4@PANI–PdII
catalyst avoids the use of phosphine ligands, which makes it more
environmentally friendly.
7 M. Z. Cai, G. M. Zheng, L. F. Zha and J. Peng, Eur. J. Org.
Chem., 2009, 1585–1591.
8 M. Z. Cai, J. Peng, W. Y. Hao and G. D. Ding, Green Chem.,
2011, 13, 190–196.
9 J. R. Niu, X. Huo, F. W. Zhang, H. B. Wang, P. Zhao,
W. Q. Hu, J. T. Ma and R. Li, ChemCatChem, 2013, 5, 349–354.
10 L. L. Zhou, J. Y. Yuan and Y. Wei, J. Mater. Chem., 2011, 21,
2823–2840.
11 (a) S. H. Xuan, Y. X. J. Wang, J. C. Yu and K. C. F. Leung,
Langmuir, 2009, 25, 11835–11843; (b) Y. H. Deng, Y. Cai,
Z. K. Sun, J. Liu, C. Liu, J. Wei, W. Li, C. Liu, Y. Wang and
D. Y. Zhao, J. Am. Chem. Soc., 2010, 132, 8466–8473; (c) Y. Lu,
Y. Yin, B. T. Mayers and Y. Xia, Nano Lett., 2002, 2, 183–186.
12 (a) J. Deng, X. Ding, W. Zhang, Y. Peng, J. Wang, X. Long, P. Li
and A. S. C. Chan, Polymer, 2002, 43, 2179–2184; (b) D. P. He,
C. Zeng, C. Xu, N. C. Cheng, H. G. Li, S. C. Mu and M. Pan,
Langmuir, 2011, 27, 5582–5588; (c) F. Wu, J. Chen, L. Li, T. Zhao
and R. Chen, J. Phys. Chem. C, 2011, 115, 24411–24417.
13 M. X. Wan and W. G. Li, J. Polym. Sci., Part A: Polym. Chem.,
1997, 35, 2129–2136.
Acknowledgements
The authors are grateful to the Key Laboratory of Nonferrous
Metals Chemistry and Resources Utilization, Gansu Province,
for financial support.
14 J. G. Deng, C. L. He, Y. X. Peng, J. H. Wang, X. P. Long, P. Li
and A. S. C. Chan, Synth. Met., 2003, 139, 295–299.
Notes and references
1 (a) P. J. Tambade, Y. P. Patil, A. G. Panda and B. M. Bhanage, 15 Y. H. Deng, D. W. Qi, C. H. Deng, X. G. Zhang and
Eur. J. Org. Chem., 2009, 3022–3025; (b) H. L. Li, M. Yang, D. Y. Zhao, J. Am. Chem. Soc., 2008, 130, 28–29.
Y. X. Qi and J. J. Xue, Eur. J. Org. Chem., 2011, 2662–2667; 16 S. H. Xuan, Y. X. J. Wang, K. C.-F. Leung and K. Y. Shu,
(c) N. De Kimpe, M. Keppens and G. Froncg, Chem. Com-
mun., 1996, 635–636.
2 (a) C. E. Song, W. H. Shim, E. J. Roh and J. H. Choi, Chem.
J. Phys. Chem. C, 2008, 112, 18804–18809.
17 H. Deng, X. L. Li, Q. Peng, X. Wang, J. P. Chen and Y. D. Li,
Angew. Chem., Int. Ed., 2005, 117, 2842–2845.
Commun., 2000, 1695–1696; (b) S. Gmouh, H. Yang and 18 S. Y. Wei, Z. Y. Ma, P. Wang, Z. P. Dong and J. T. Ma, J. Mol.
M. Vaultier, Org. Lett., 2003, 5, 2219–2222; (c) A. Furstner, Catal. A: Chem., 2013, 370, 175–181.
D. Voigtlander, W. Schrader, D. Giebel and M. T. Reetz, Org. 19 S. H. Xuan, L. Y. Hao, W. Q. Jiang, X. L. Gong, Y. Hu and
Lett., 2001, 3, 417–420. Z. Y. Chen, J. Magn. Magn. Mater., 2007, 308, 210–213.
3 (a) B. M. O’Keefe, N. Simmons and S. F. Martin, Tetrahedron, 20 M. Ranjbar, S. Fardindoost, S. M. Mahdavi, A. Iraji zad and
2011, 67, 4344–4351; (b) X. F. Wu, H. Neumann and M. Beller,
Adv. Synth. Catal., 2011, 353, 788–792; (c) M. Dai, B. Liang,
N. Tah-masebi Garavand, Sol. Energy Mater. Sol. Cells, 2011,
95, 2335–2340.
C. H. Wang, Z. J. You, J. Xiang, G. B. Dong, J. H. Chen and 21 M. V. Khedkar, T. Sasaki and B. M. Bhanage, RSC Adv., 2013,
Z. Yang, Adv. Synth. Catal., 2004, 346, 1669–1673. 3, 7791–7797.
This journal is ©The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2014
New J. Chem., 2014, 38, 4622--4627 | 4627