D
J.-S. Li et al.
Letter
Synlett
transformation smoothly undergoes under mild reaction
conditions without transition metal catalysts or additional
chemical oxidants. Extensive investigation on the autoxida-
tive reactions of other sp3 C–H bonds is still underway.
(a) Radical-trapping experiment
O
Ph
TEMPO (2.0 equiv)
standard conditions
+
Ph
Ph
N
Ph
Ph
Ph
O
1a
2a 30%
(b) Benzhydrol as an intermediate
TEMPO-adduct
O
OH
standard conditions
Acknowledgment
Ph
Ph
Ph
Ph
2a 98%
This work was supported by the National Natural Science Foundation
of China (21202010 & 21376031), the Hunan Provincial Natural Sci-
ence Foundation of China (2015JJ3012), the Scientific Research Fund
of Hunan Provincial Education Department (16B003), the Hunan Pro-
vincial Science and Technology Project (2013FJ3076), the Hunan Pro-
vincial Key Laboratory of Materials Protection for Electric Power and
Transportation (2015CL05), Changsha University of Science & Tech-
nology, P. R. of China.
(c) O2-free experiment
t-BuONa, Ar
no 2a
Ph
Ph
DMSO, 50 °C, 24 h
Scheme 2 Control experiments
The TLC and GC–MS analyses showed that no reaction oc-
curred, with only the starting material detected. This
means that in this transformation, molecular oxygen is in-
dispensable.
Supporting Information
Base-mediation suggests that this autoxidative carbon-
ylation most likely involves an anion-radical oxidation rath-
er than a pure free-radical process. Based on the document-
ed reports12a,19 and our experimental observations, a tenta-
tive mechanism is proposed for this base-promoted
autoxidative formation of diaryl ketones,20 as shown in
Scheme 3. In the case of diphenylmethane (1a), the t-BuO
anion initially abstracts the hydrogen atom from 1a to form
a carbanionic intermediate 3, which is oxidized by oxygen
to intermediate free radical 4. The radical 4 would be rapid-
ly converted into a peroxy radical 5 in the presence of ex-
cess oxygen. Undoubtedly, this rapid consumption of 4 ac-
counts for the absence of the homocoupled product. Then,
the peroxy radical 5 can be readily transformed into a hy-
droperoxidate intermediate 6 by the proton abstraction
from the species such as t-BuOH or 1a in the reaction sys-
tem. Next, this intermediate 6 loses one water molecule to
yield the desired ketone 2 or otherwise converts to the ben-
zyl alcohol 7, which undergoes further autoxidative trans-
formation mediated by base to finally produce the ketone 2.
Supporting information for this article is available online at
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
o
nrtogI
f
rmoaitn
References and Notes
(1) (a) Trost, B. M.; Fleming, I. Comprehensive Organic Synthesis:
Selectivity, Strategy & Efficiency in Modern Organic Chemistry;
Vol. 7; Pergamon Press: Oxford, 2007. (b) Sheldon, R. Metal-cat-
alyzed Oxidations of Organic Compounds: Mechanistic Principles
and Synthetic Methodology Including Biochemical Processes;
Elsevier: Amsterdam, 2012.
(2) Campbell, A. N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851.
(3) Garrett, C. E.; Prasad, K. Adv. Synth. Catal. 2004, 346, 889.
(4) (a) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012, 41, 5588.
(b) Scheuermann, C. J. Chem. Asian J. 2010, 5, 436. (c) Girard, S.
A.; Knauber, T.; Li, C.-J. Angew. Chem. Int. Ed. 2014, 53, 74.
(d) Sakamoto, R.; Inada, T.; Selvakumar, S.; Moteki, S. A.;
Maruoka, K. Chem. Commun. 2016, 52, 3758. (e) Zhang, L.; Yi, H.;
Wang, J.; Lei, A. Green Chem. 2016, 18, 5122. (f) Zhang, W.;
Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G.
Science 2016, 353, 1014. (g) Li, J.-S.; Xue, Y.; Fu, D.-M.; Li, D.-L.;
Li, Z.-W.; Liu, W.-D.; Pang, H.-L.; Zhang, Y.-F.; Cao, Z.; Zhang, L.
RSC Adv. 2014, 4, 54039. (h) Mao, D.; Zhu, X.; Hong, G.; Wu, S.;
Wang, L. Synlett 2016, 27, 2481.
–
•
t-BuO–
O2
Ph
Ph
Ph
Ph
Ph
Ph
(5) (a) Wu, S.-B.; Long, C.; Kennelly, E. J. Nat. Prod. Rep. 2014, 31,
1158. (b) Belluti, F.; De Simone, A.; Tarozzi, A.; Bartolini, M.;
Djemil, A.; Bisi, A.; Gobbi, S.; Montanari, S.; Cavalli, A.;
Andrisano, V.; Bottegoni, G.; Rampa, A. Eur. J. Med. Chem. 2014,
78, 157. (c) Vooturi, S. K.; Cheung, C. M.; Rybak, M. J.; Firestine,
S. M. J. Med. Chem. 2009, 52, 5020. (d) Lee, S. Y.; Yasuda, T.; Yang,
Y. S.; Zhang, Q.; Adachi, C. Angew. Chem. Int. Ed. 2014, 53, 6402.
(e) Ryabchun, A.; Sakhno, O.; Wegener, M. RSC Adv. 2016, 6,
51791.
3
4
1a
OH
O2
O2
Ph
Ph
7
•
OO
OOH
O
Ph
Ph
Ph
Ph
Ph
Ph
6
5
2a
Scheme 3 Plausible mechanism
(6) (a) Larock, R. C. Comprehensive Organic Transformations: A Guide
to Functional Group Preparations; Wiley: New York, 1999. (b) Li,
J.-S.; Fu, D.-M.; Xue, Y.; Li, Z.-W.; Li, D.-L.; Da, Y.-D.; Yang, F.;
Zhang, L.; Lu, C.-H.; Li, G. Tetrahedron 2015, 71, 2748. (c) Li, J.-S.;
Cai, F.-F.; Li, Z.-W.; Liu, W.-D.; Simpson, J.; Xue, Y.; Pang, H.-L.;
Huang, P.-M.; Cao, Z.; Li, D.-L. RSC Adv. 2014, 4, 474. (d) Li, J.-S.;
Xue, Y.; Li, Z.-W.; Liu, W.-D.; Lu, C.-H.; Zhao, P.-X. Synlett 2013,
24, 2003.
In conclusion, we have demonstrated an autoxidative
oxygenation of diarylmethanes sp3 C–H bonds in the pres-
ence of O2-mediation by t-BuONa. This protocol allows for
an alternative method for ready access to diaryl ketones
from benzyl derivatives in good to excellent yields. The
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–E