2408
V. Aucagne et al.
LETTER
(CH2), 22.7 (CH2), 25.8 (CH3), 26.7 (CH3), 28.6 (CH2), 29.1
(CH2), 29.2 (CH2), 29.3 (CH2), 31.9 (CH2), 49.3 (CH2), 69.3
(CH2), 70.8, 75.9 (CH), 95.9, 101.3, 109.8, 126.6 (CH),
133.4 (CH), 145.4 (CH), 149.8, 162.2. HRMS (ESI): m/z
calcd for C22H32N2O4Na: 411.2260 [M + Na]+. Found:
411.2259.
Acknowledgment
We thank the CNRS and MENRT for financial support. F. Amblard
thanks the MENRT for a Ph.D. fellowship.
References
(16) General Procedure for Alkyne Cyclization Reactions:
Under dry nitrogen, the alkyne derivatives (0.047 mmol)
were dissolved in acetone (1 mL), then AgNO3 (0.009
mmol) was added. The reaction was stirred at r.t. until
complete conversion was reached. After evaporation of
volatiles, the crude residue was dissolved in EtOAc, washed
3 times with H2O, dried over MgSO4, filtered and concentred
in vacuo. The cyclized compound was pure enough (purity
determined by proton-decoupled 13C NMR) to be subjected
to the next reaction without further purification.
(17) 3-[(E)-3-(2,2-Dimethyl-1,3-dioxolan-4-yl)-2-propenyl]-6-
(4-pentylphenyl)furo[2,3-d]pyrimidin-2-(3H)-one (15a):
1H NMR (CDCl3): d = 0.90 (t, 3 H, J = 6.7 Hz), 1.21–1.41
(m, 4 H), 1.38 (s, 3 H), 1.42 (s, 3 H), 1.55–1.71 (m, 2 H), 2.64
(t, 2 H, J = 7.3 Hz), 3.61 (dd, 1 H, J = 8.0 Hz), 4.11 (dd, 1 H,
J = 6.1 Hz, J = 8.0 Hz), 4.50–4.76 (m, 3 H), 5.77 (dd, 1 H,
J = 7.0 Hz, J = 15.5 Hz), 6.01 (dt, 1 H, J = 6.0 Hz, J = 15.5
Hz), 6.64 (s, 1 H), 7.25 (d, 2 H, J = 8.1 Hz), 7.66 (d, 2 H,
J = 8.1 Hz), 7.89 (s, 1 H). 13C NMR (CDCl3): d = 14.1 (CH3),
22.6 (CH2), 25.9 (CH3), 26.7 (CH3), 31.0 (CH2), 31.5 (CH2),
35.9 (CH2), 52.4 (CH2), 69.3 (CH2), 76.1 (CH), 96.4 (CH),
108.9, 109.8, 125.1 (CH × 2), 125.7, 127.5 (CH), 129.2 (CH
× 2), 133.4 (CH), 138.9 (CH), 145.4, 155.2, 156.4, 171.9.
HRMS (ESI): m/z calcd for C25H30N2O4Na: 445.5186 [M +
Na]+. Found: 445.5182.
(1) Agrofoglio, L. A.; Gillaizeau, S.; Saito, Y. Chem. Rev. 2003,
103, 1875; and references cited therein.
(2) (a) McGuigan, C.; Yarnold, C. J.; Jones, G.; Velasquez, S.;
Barucki, H.; Brancale, A.; Andrei, G.; Snoeck, R.; De
Clercq, E.; Balzarini, J. J. Med. Chem. 1999, 42, 4479.
(b) McGuigan, C.; Barucki, H.; Blewett, S.; Carangio, A.;
Erischen, J. T.; Andrei, G.; Snoeck, R.; De Clercq, E.;
Balzarini, J. J. Med. Chem. 2000, 43, 4993. (c) Srinivasan,
S.; McGuigan, C.; Andrei, G.; Snoeck, R.; De Clercq, E.;
Balzarini, J. Bioorg. Med. Chem. Lett. 2001, 11, 391.
(d) McGuigan, C.; Brancale, A.; Barucki, H.; Srinivasan, S.;
Jones, G.; Pathirana, R.; Blewett, S.; Alvarez, R.; Yarnold,
C. J.; Carangio, A.; Velazquez, S.; Andrei, G.; Snoeck, R.;
De Clercq, E. Drugs Future 2000, 25, 1151. (e) Carangio,
A.; McGuigan, C.; Andrei, G.; Snoeck, R.; De Clercq, E.;
Balzarini, J. Antivir. Chem. Chemother. 2001, 12, 187.
(3) Mansour, T. S.; Evans, C. A.; Charron, M.; Korba, B. E.
Bioorg. Med. Chem. Lett. 1997, 7, 303.
(4) (a) Robins, M. J.; Barr, P. J. J. Org. Chem. 1983, 48, 1854.
(b) Robins, M. J.; Barr, P. J. Tetrahedron Lett. 1981, 22, 421.
(5) Castro, C. E.; Gaughan, E. J.; Owsley, D. C. J. Org. Chem.
1966, 31, 4071.
(6) Bleackley, R. C.; Jones, A. S.; Walker, R. T. Tetrahedron
1976, 32, 2795.
(18) General Procedure for Deprotection of Acetalic
Derivatives: The protected derivative (acetal, 0.22 mmol)
was stirred at r.t. for 3 h in a mixture of TFA–H2O (10 mL/
5 mL). After evaporation of volatiles the crude residue was
purified by flash chromatography.
(19) General Procedure for Deacetylation: Acetylated
nucleoside analogue (1 mmol) was dissolved in pyridine (10
mL) and EtOH (5 mL). The reaction mixture was cooled to
–10 °C and 5 mL of 1 M NaOH aq solution was added. The
resulting solution was stirred at this temperature until
completion (typically 1–4 h, followed by TLC). The reaction
mixture was neutralized with Dowex (H+ form) then filtered
through a fritted glass funnel. Solvents were evaporated in
vacuo and the oily residue was submitted to a flash column
chromatography using an appropriate eluent (typically
hexanes–EtOAc 25:75, EtOAc, and MeOH–EtOAc 1%) to
furnish the desired nucleosides.
(20) 1-[(E)-4,5-dihydroxy-2-pentenyl]-5-[2-(4-pentyl-
phenyl)ethynyl]-2,4 (1H,3H)-pyrimidinedione (6a): 1H
NMR (DMSO-d6): d = 0.73–0.91 (m, 3 H), 1.18–1.37 (m, 4
H), 1.49–1.68 (m, 2 H), 2.57 (t, 2 H, J = 7.5 Hz), 3.22–3.33
(m, 2 H), 3.91–4.03 (m, 1 H), 4.25–4.39 (m, 2 H), 4.51–4.61
(m, OH), 4.86 (d, OH, J = 4.5 Hz), 5.69–5.85 (m, 2 H), 7.22
(d, 2 H, J = 8.0 Hz), 7.36 (d, 2 H, J = 8.0 Hz), 8.10 (s, 1 H)
11.64 (s, NH). 13C NMR (DMSO-d6): d = 13.9 (CH3), 21.9
(CH2), 30.3 (CH2), 30.8 (CH2), 34.9 (CH2), 48.9 (CH2), 65.7
(CH2), 71.4 (CH), 81.6, 92.0, 97.7, 119.6, 123.7 (CH), 128.7
(CH × 2), 131.0 (CH × 2), 135.8 (CH), 143.2, 148.3 (CH),
149.8, 161.9. HRMS (ESI): m/z calcd for C22H26N2O4Na:
405.1790 [M + Na]+. Found: 405.1791.
(7) Aucagne, V.; Berteina-Raboin, S.; Guenot, P.; Agrofoglio,
L. A. J. Comb. Chem. 2004, in press.
(8) For electrophilic cyclization using NIS or NBS, see:
(a) Rao, M. S.; Esho, N.; Sergeant, C.; Dembinski, R. J. Org.
Chem. 2003, 68, 6788. (b) Arcadi, A.; Cacchi, S.; Di
Giuseppe, S.; Babrizi, G.; Marinelli, F. Org. Lett. 2002, 4,
2409.
(9) Jong, T.-T.; Leu, S.-J. J. Chem. Soc., Perkin Trans. 1 1990,
423.
(10) Marshall, J. A.; Wang, X. J. J. Org. Chem. 1990, 55, 2995.
(11) Robins, M. J.; Barr, P. J. J. Org. Chem. 1983, 48, 1854.
(12) Kelly, J. L.; Kelsey, J. E.; Hull, W. R.; Krochmal, M. P.;
Schaeffer, H. J. J. Med. Chem. 1981, 24, 753.
(13) Amblard, F.; Nolan, S. P.; Gillaizeau, I.; Agrofoglio, L. A.
Tetrahedron Lett. 2003, 44, 9177.
(14) Typical Procedure for Sonogashira Cross-Coupling.
Under dry nitrogen, the iodo derivatives (0.026 mmol) were
dissolved in DMF (0.5 mL), then alkyne (0.079 mmol), Et3N
(0.079 mmol), CuI (0.005 mmol), PdCl2 (PPh3)2 (0.003
mmol) were added. The reaction was stirred at r.t. until
complete conversion was reached. After evaporation of
volatiles the crude residue was purified by flash
chromatography.
(15) 5-(1-decynyl)-1-[(E)-3-(2,2-dimethyl-1,3-dioxolan-4-yl)-
2-propenyl]-2,4 (1H,3H)-pyrimidinedione (12b): 1H
NMR (CDCl3): d = 0.86 (t, 3 H, J = 6.9 Hz), 1.15–1.48 (m,
16 H), 1.50–1.63 (m, 1 H), 2.36 (t, 2 H, J = 6.9 Hz), 3.58 (dd,
1 H, J = 8.0 Hz), 4.10 (dd, 1 H, J = 6.3 Hz, J = 8.0 Hz), 4.22–
4.41 (m, 2 H), 4.48–4.61 (m, 1 H), 5.72 (dd, 1 H, J = 6.0 Hz,
J = 15.4 Hz), 5.83 (dt, 1 H, J = 5.7 Hz, J = 15.4 Hz), 7.31 (s,
1 H), 9.17 (s, 1 H). 13C NMR (CDCl3): d 14.2 (CH3), 19.7
Synlett 2004, No. 13, 2406–2408 © Thieme Stuttgart · New York