R. R. Leleti et al. / Tetrahedron Letters 48 (2007) 8505–8507
8507
Table 2. 1,3-Isomerization of allylic alcohols in the presence of
different acids
conversion of secondary and tertiary allylic alcohols to
primary allylic alcohols in excellent yields.
OH
Acid, THF / H O (4 : 1)
2
OH
rt, 12 h
References and notes
a
1. (a) Wipf, P. In Comprehensive Organic Synthesis; Trost, B.
M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol.
5, pp 827–873; (b) Hill, R. K. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press:
Oxford, 1991; Vol. 5, pp 785–826; (c) Katsuki, T. In
Comprehensive Asymmetric Catalysis; Jacobsen, E. N.,
Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, 1999;
Vol. 2, pp 621–648; (d) Charette, A. B.; Marcoux, J.-F.
Synlett 1995, 1197–1207; (e) Uma, R.; Cr e´ visy, C.; Gr e´ e, R.
Chem. Rev. 2003, 103, 27–51; (f) Marshall, J. A. Chem. Rev.
Entry
Acid
Yield (%) (recovered SM (%))
1
2
3
4
5
6
MeSO
TfOH
3
H
91 (0)
65 (5)
65 (20)
62 (21)
0 (90)
0 (85)
PhSO
p-CH
CH COOH
CF COOH
3
H
3
C
6
H
4
SO
3
H
3
3
a
Isolated yields.
2
000, 100, 3163–3185.
2
3
4
. Yoshihito, A.; Akio, O.; Hiroshi, I. Chem. Pharm. Bull.
1982, 30, 881–886.
. Mukhopadhyay, M.; Reddy, M. M.; Maikap, G. C.; Iqbal,
J. J. Org. Chem. 1995, 60, 2670–2676.
+
OH
OH2
+
H
. (a) Morrill, C.; Grubbs, R. H. J. Am. Chem. Soc. 2005, 127,
2
842–2843; (b) Morrill, C.; Beutner, G.; Grubbs, R. H. J.
Org. Chem. 2006, 71, 7813–7825; (c) Ge, W.; Ampa, J.;
Rudy, L. L. Inorg. Chem. Acta 2005, 358, 933–940; (d)
Frank, R. F.; Rudy, L. L.; Ge, W. Inorg. Chem. Commun.
-
H O
2
2
002, 5, 384–387; (e) Schoop, T.; Roesky, H. W.; Nolter-
meyer, M.; Schmidt, H.-G. Organometallics 1993, 12, 571–
74; (f) Jacob, J.; Espenson, J. H.; Jensen, J. H.; Gordon,
+
OH2
5
M. S. Organometallics 1998, 17, 1835–1840.
5
. Typical experimental procedure: To a solution of alcohol
(
(
1.0 mmol) in THF/H
2.0 mmol) was added dropwise over 5 min at rt, and
2
O (4:1, 5 mL) methanesulfonic acid
+
H O
2
stirring was continued at this temperature for 12 h. The
progress of the reaction was monitored by TLC. After
complete conversion, the reaction mixture was quenched
with saturated NaHCO3 solution (10 mL). The resulting
mixture was extracted with i-PrOAc (3· 10 mL). The
combined organic layers were washed with water and
concentrated under reduced pressure. The resulting crude
product was purified by column chromatography (silica gel
+
OH
-
H+
OH2
2
Scheme 2.
2
30–400 mesh) using a gradient mixture of i-PrOAc and
pentane to furnish pure allylic alcohol.
A possible mechanism for this reaction is depicted in
Scheme 2.
6
. (a) Thomas, D. A.; Daniela, C.; Julia, A. C.; Dennis, K. T.;
Edward, R. T. J. Org. Chem. 2005, 70, 8344–8351; (b) Ryo,
T.; Naoki, U.; Kasuke, T.; Kengo, Y.; Narihito, S. J. Am.
Chem. Soc. 2001, 123, 9525–9534; (c) Milton, L. H.;
Robert, A. Z.; Micheal, N. C.; Norman, P. J.; John, M.;
Kathryn, T.; David, A. B.; Ihor, E. K.; Karen, M. H. J.
Med. Chem. 1990, 33, 908–918.
In conclusion, we have developed a simple and efficient
approach for 1,3-isomerization of allylic alcohols using
inexpensive methanesulfonic acid as the catalyst. The
notable feature of this reaction is a high regioselective