ORGANIC
LETTERS
2
005
Vol. 7, No. 20
391-4393
Chelating Diamide Based Rate
Enhancement of Intramolecular Alkene
Hydroaminations Catalyzed by a Neutral
Sc(III) Complex
4
Joon Young Kim and Tom Livinghouse*
Department of Chemistry, Montana State UniVersity, Bozeman, Montana 59717
Received July 5, 2005
ABSTRACT
Neutral scandium amido complexes are viable catalysts for intramolecular alkene hydroamination. Catalytic activity is strongly coupled to the
electronic character of the Sc(III) ligand environment with chelating diamide coordination providing a precatalyst possessing substantially
improved activity and superb distereoselectivity in the synthesis of trans-2,5-disubstituted pyrrolidines.
The intramolecular hydroamination of unsaturated C-C
By virtue of the comparatively small covalent radius of Sc-
(III), complexes derived from this metal would be expected
to exhibit enhanced stereoselectivities in C-N bond forma-
tion, should active catalysts be identified. It is therefore of
interest that only one report has appeared describing Sc(III)
catalysts for alkene hydroamination and, additionally, that
linkages constitutes a powerful and atom-economic method
1
for the synthesis of nitrogenous heterocycles. The seminal
2
group 3 metallocenes developed by Marks and co-workers
have recently been joined by a variety of nonmetallocene
complexes of the group 3 metals as catalysts for the important
3
,4
6
variation of this reaction involving alkenes as addends.
these are cationic rather than neutral complexes. We have
Complexes derived from yttrium and the lanthanides have
been employed as catalysts in most cases involving the
internal hydroamination of alkenes involving early metals.
previously disclosed that chelating diamide and bis(thio-
(3) (a) Ryu, J.-S.; Li, G. Y.; Marks, T. J. J. Am. Chem. Soc. 2003, 125,
4,5
12584. (b) O’Shaughnessy, P. N.; Knight, P. D.; Morton, C.; Gillespie, K.
M.; Scott, P. Chem. Commun. 2003, 1770. (c) Gribkov, D. V.; Hultzsch,
K. C.; Hampel, F.; Wagner, T. Organometallics 2004, 23, 2601. (d) Kim,
Y. K.; Livinghouse, T.; Horino, Y. J. Am. Chem. Soc. 2003, 125, 9560. (e)
Kim, Y. K.; Livinghouse, T. Angew. Chem., Int. Ed. 2002, 41, 3645. (f)
Kim, Y. K.; Livinghouse, T.; Bercaw, J. E. Tetrahedron Lett. 2001, 42,
2933. (g) Gribkov, D. V.; Hulzsch, K. C.; Hampel, F. Chem. Eur. J. 2003,
9, 4796.
(4) Catalytic activity has also been observed for the following. (a) Simple
Ti(IV) amides: Bexrud, J. A.; Beard, J. D.; Leitch, D. C.; Shafer, L. L.
Org. Lett. 2005, 7, 1959. (b) A neutral Zr(IV)‚NPS complex: Kim, H.;
Lee, P. H.; Livinghouse, T. J. Chem. Soc. Chem. Commun. 2005, in press.
(c) And calcium complexes: Crimmin, M. R.; Casely, I. J.; Hill, M. S. J.
Am Chem. Soc. 2005, 127, 2042.
(1) (a) Pohlki, F.; Doye, S. Chem. Soc. ReV. 2003, 32, 104. (b) Muller,
T. E.; Beller, M. Chem. ReV. 1998, 98, 675. For hydroaminations catalyzed
by late transition metals, see: Vogels, C. M.; Hayes, P. G.; Shaver, M. P.;
Westcott, S. A. J. Chem. Soc., Chem. Commun. 2000, 51. Dorta, R.; Egli,
P.; Zurcher, F.; Togni, A. J. Am. Chem. Soc. 1997, 119, 10857. Casalnuovo,
A. L.; Calabrese, J. C.; Milstein, D. J. Am. Chem. Soc. 1988, 110, 6738.
Hegedus, L. S.; McKearin, J. M. J. Am. Chem. Soc. 1982, 104, 2444.
(2) (a) Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 39, 673 and
references therein. (b) Ryu, J.-S.; Marks, T. J.; McDonald, F. E. J. Org.
Chem. 2004, 69, 1038. (c) Gagn e´ , M. R.; Stern, C. L.; Marks, T. J. J. Am.
Chem. Soc. 1992, 114, 275. (d) Tian, S.; Arredondo, V. M.; Stern, C. L.;
Marks, T. J. Organometallics 1999, 18, 4421. (e) Ryu, J.-S.; Marks, T. J.;
McDonald, F. E. Org. Lett. 2001, 3, 3091. (f) Arredondo, V. M.; Tian, S.;
McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc. 1999, 121, 3633 and
references therein.
(5) For the use of cationic Zr(IV) complexes, see: (a) Knight, P. D.;
Munslow, I.; O’Shaughnessy, P. N.; Scott, P. Chem. Commun. 2004, 894.
(b) Gribkov, D. V.; Hultzsch, K. C. Angew. Chem., Int. Ed. 2004, 43, 5542.
1
0.1021/ol051574h CCC: $30.25
© 2005 American Chemical Society
Published on Web 09/07/2005