Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 5
ARTICLE
Journal Name
Conclusions
DOI: 10.1039/C5OB01770J
In summary, a [2]catenane, where each ring possesses one
isophthalamide unit, has been synthesised in just three steps
from commercially available starting materials. The rings of the
catenane are able to rotate relative to one another; the rate of
this process may be modulated by solvent or temperature.
Further investigations into this new class of catenanes,
including the preparation of examples where the motion of the
rings may be controlled by chemical stimuli, are being
undertaken in our laboratories.
Figure 6: Carbon atom labels used in the assignment of the NMR data.
Macrocycle
2860 (C-H), 1660 (C=O), 1630 (C=O), 1530 (N-H), 1080 (C-O).
1
. Mp 198-200 °C. νmax / cm-1 (neat) 3320 (N-H),
3
4
δ
H(400 MHz; CDCl3) 7.91 (2H, dd, J = 7.7 Hz J = 1.7 Hz, C2H),
7.80 (1H, s, C4H), 7.45 (1H, t, 3J = 7.7 Hz, C1H), 7.21-7.27 (8H, m,
Acknowledgements
C8H & C9H), 6.85 (2H, t, J = 5.4 Hz, NH), 4.46-4.48 (8H, m, C6H
3
N. H. E. wishes to thank Lancaster University for financial
support. We thank Drs Fraser White, Daniel Baker and Marcus
Winter (Agilent Technologies, Yarnton, UK) and Dr Mike
Coogan (Lancaster University) for assistance with the
collection, solution and interpretation of the X-ray
& C11H), 3.58-3.68 (8H, m, C12H & C13H).
δC(100 MHz; CDCl3)
167.0 (C5), 137.6, 137.1, 134.6, 130.9, 129.5, 128.5, 128.1,
123.7 (8 Ar C environments), 72.8 (C11), 70.6, 69.4 (C12 & C13),
43.9 (C6). m/z (ES) 492.2480 ([M + NH4]+, C28H34N3O5 requires
492.2493.
crystallographic data of macrocycle
1 and catenane 2, and the
Catenane 2
. Mp 224-226 °C. νmax / cm-1 (neat) 3350 (N-H),
EPSRC UK National Mass Spectrometry facility at Swansea
University, UK.
2860 (C-H), 1650 (C=O), 1620 (C=O), 1510 (N-H), 1070 (C-O).
δ
H(400 MHz; d6-DMSO) 8.17 (2H, s, C4H), 8.04 (4H, br s, NH),
3
7.97 (4H, dd, J = 7.7 Hz 4J = 1.6 Hz, C2H), 7.59 (2H, t, 3J =
7.7 Hz, C1H), 6.92-7.04 (16H, m, C8H & C9H), 4.15-4.18 (16H, m,
C6H & C11H), 3.10 (8H, br s, OCH2CH2O), 2.93 (8H, br s,
Experimental
OCH2CH2O). δ
C(100 MHz; d6-DMSO) 165.6 (C5), 137.3, 136.2,
General Information
134.2, 130.7, 128.6, 128.5, 124.9 (8 Ar C environments), 72.2
(C11), 69.3, 68.1 (C12 & C13), 43.5 (C6). m/z (ES) 949.4374 ([M +
H]+, C56H61N4O10 requires 949.4382.
Commercially available solvents and chemicals were used
without further purification. Deionised water was used in all
cases. Analytical TLC was carried out on aluminium backed
silica gel sheets with fluorescent indicator (254 nm). Column
chromatography was carried out on silica gel with a 60 Å
particle size.
Notes and references
1
(a) N. H. Evans and P. D. Beer, Chem. Soc. Rev., 2014, 43,
4658-4683; (b) G. Gil-Ramírez, D. A. Leigh and A. J. Stephens,
Angew. Chem. Int. Ed., 2015, 54, 6110-6150.
M. Xue, Y. Yang, X. Chi, X. Yan and F. Huang, Chem. Rev.,
2015, 115, 7398-7501.
S. F. M. van Dongen, S. Cantekin, J. A. A. W. Elemans, A. E.
Rowan and R. J. M. Nolte, Chem. Soc. Rev., 2014, 43, 99-122.
E. R. Kay, D. A. Leigh and F. Zerbetto, Angew. Chem. Int. Ed.,
2007, 46, 72-191.
IR spectra were recorded on an Agilent Technologies Cary 630
FTIR spectrometer. NMR spectra were recorded on a Bruker
400 MHz Ultra Shield Plus, with the NMR data for macrocycle
and catenane reported below being assigned according to
1
2
3
4
5
2
the atom labels to be found in Figure 6. Mass spectra were
recorded on a Thermofisher LTQ Orbitrap XL at the EPSRC UK
National Mass Spectrometry Facility at Swansea University.
Melting points were recorded on a Gallenkamp capillary
melting point apparatus and are uncorrected.
(a) C.-O. Dietrich-Buchecker, J.-P. Sauvage and J.-P.
Kintzinger, Tetrahedron Lett., 1983, 24, 5095-5098; V.
Aucagne, J. Berná, J. D. Crowley, S. M. Goldup, K. D. Hänni, D.
A. Leigh, P. J. Lusby, V. E. Ronaldson, A. M. Z. Slawin, A.
Experimental Procedures
Viterisi and D. B. Walker, J. Am. Chem. Soc., 2007, 129
,
Preparation of Macrocycle 1 and Catenane 2:
11950-11963; (c) S. M. Goldup, D. A. Leigh, T. Long, P. R.
McGonigal, M. D. Symers and J. Wu, J. Am. Chem. Soc., 2009,
131, 15924-15929; (d) S.-T. Tung, C.-C. Lai, Y.-H. Liu, S.-M.
Peng and S. H. Chiu, Angew. Chem. Int. Ed., 2013, 52, 13269-
13272; (e) C. Lincheneau, B. Jean-Denis and T. Gunnlaugsson,
Chem. Commun., 2014, 50, 2857-2860; (f) J. E. Beves, B. A.
Blight, C. J. Campbell, D. A. Leigh and R. T. McBurney, Angew.
Chem. Int. Ed., 2011, 50, 9260-9327.
(a) G. M. Hübner, J. Gläser, C. Seel and F. Vögtle, Angew.
Chem. Int. Ed. 1999, 38, 383-386; (b) J. A. Wisner, P. D. Beer,
M. G. B. Drew and M. R. Sambrook, J. Am. Chem. Soc., 2002,
124, 12469-12476; (c) M. R. Sambrook, P. D. Beer, J. A.
Wisner, R. L. Paul and A. R. Cowley, J. Am. Chem. Soc., 2004,
126, 15364-15365; (d) E. Arunkumar, C. C. Forbes, B. C. Noll
and B. D. Smith, J. Am. Chem. Soc., 2005, 127, 3288-3289; (e)
Isophthaloyl chloride (242 mg, 1.19 mmol) dissolved in CH2Cl2
(100 mL) and the dimethanamine (410 mg, 1.19 mmol)
dissolved in CH2Cl2 (100 mL) were added dropwise to a
solution of NEt3 (482 mg, 0.66 mL, 4.76 mmol) in CH2Cl2 (200
mL). The reaction was stirred under an Ar(g) atmosphere for 16
h. The reaction mixture was concentrated to 100 mL, then
washed with 1M HCl(aq) (1 × 100 mL) and 1M KOH(aq) (1 × 100
mL). The organic layer was separated, dried (MgSO4), filtered
and concentrated to give a yellow oil. The crude material was
purified by silica gel column chromatography (90:10
6
EtOAc/CH2Cl2) to yield macrocycle
1 (Rf = 0.55, 68 mg, 12 %)
and catenane (Rf = 0.50, 70 mg, 12 %) as white solids.
2
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins