the introduction of mannose and coumarin unit derivatives to the
periphery of individual blocks allowed preparation of agents with
dual function, recognition and detection, which may prove useful
in identification and treatment of pathological conditions via
multivalent interactions.
Financial support of this work by the National Institutes of
Health through a Program of Excellence in Nanotechnology
Grant (1 U01 HL080729-01) and the National Institute of General
Medical Sciences (GM 28384), National Science Foundation
(UCSB MRSEC, DMR-0520415, DMR-0301833, CHE-0514031),
the W. M. Keck Foundation, the Skaggs Institute for Chemical
Biology, Skaggs predoctoral fellowship (P.W.), and the Sweden-
American Foundation (M.M.) is gratefully acknowledged. For
synthetic help and fruitful discussions, thanks to D. Thayer and
S. Narayan.
Fig. 1 MALDI mass spectrum of the differentiated, dye-labelled
dendrimer 13 showing efficient functionalization and monodispersity.
Notes and references
to the alkyne units resulting in 12. After introduction of the
1
6 alkynes (via esterification with the anhydride of pentynoic acid),
1
C. S. Gudipati, C. M. Greenlief, J. A. Johnson, P. Prayongpan and
K. L. Wooley, J. Polym. Sci., Part A: Polym. Chem., 2004, 42,
the resulting dendrimer 13 was directly coupled with the
unprotected 2-azidoethyl a-D-mannopyranoside in THF–water
to furnish the desired asymmetrical, dual functionalized dendrimer,
6193–6208; P. Y. W. Dankers, M. C. Harmsen, L. A. Brouwer, M. J. A.
Van Luyn and E. W. Meijer, Nat. Mater., 2005, 4, 568–574; S. Fuchs,
T. Kapp, H. Otto, T. Schoneberg, P. Franke, R. Gust and
A. D. Schluter, Chem.–Eur. J., 2004, 10, 1167–1192; C. J. Hawker
and K. L. Wooley, Science, 2005, 309, 1200–1203.
M. Mammen, S. Choi and G. M. Whitesides, Angew. Chem., Int. Ed.,
1998, 37, 2754–2794.
M. Liu and J. M. J. Fr e´ chet, Pharm. Sci. Technol. Today, 1999, 2, 393;
R. Esfand and D. A. Tomalia, Drug Discovery Today, 2001, 6, 427.
E. K. Woller, E. D. Walter, J. R. Morgan, D. J. Singel and
M. J. Cloninger, J. Am. Chem. Soc., 2003, 125, 8820–8826;
E. K. Woller and M. J. Cloninger, Org. Lett., 2002, 4, 7–10;
E. K. Woller and M. J. Cloninger, Biomacromolecules, 2001, 2,
1052–1054.
14. Complete characterization of the asymmetric dendrimers by
GPC, NMR and MALDI spectroscopy showed essentially
monodisperse materials with quantitative functionalization of the
chain ends after every step. For example, the acetylene
functionalized, fluorescently labelled dendrimer 13 showed a single
2
3
4
+
+
molecular ion (MH = 4184; MNa = 4206) in the MALDI
spectrum which correlates with 2 coumarin and 16 acetylene chain
end groups (Fig. 1). Designed to bear peripheral groups for
polyvalent binding (mannose) and fluorescent dyes (coumarin) for
visualization/diagnostic purposes, this macromolecular structure is
an example of the sophisticated, multifunctional nanomaterials
that can be constructed in a stepwise, yet facile manner using Click
5
E. R. Gillies, T. B. Jonsson and J. M. J. Fr e´ chet, J. Am. Chem. Soc.,
2004, 126, 11936.
6
7
E. R. Gillies and J. M. J. Fr e´ chet, Drug Discovery Today, 2005, 10, 35.
Stefan Hecht, J. Polym. Sci., Sect A: Polym. Chem., 2003, 41,
1047–1058; H. Baigude, K. Katsuraya, K. Okuyama, K. Hatanaka,
E. Ikeda, N. Shibata and T. Uryu, J. Polym. Sci., Sect. A: Polym.
Chem., 2004, 42, 1400–1414; C. J. Hawker, K. L. Wooley and
J. M. J. Fr e´ chet, J. Chem. Soc., Perkin Trans. 1, 1993, 1287–1297.
13
methodology.
The performance of the mannosylated dendrimer was evaluated
in the standard hemagglutination assay using the mannose binding
14
protein concanvalin A and rabbit red blood cells. Dendrimer 14
exhibited 240-fold greater potency than monomeric mannose,
corresponding to a relative activity of 15 per sugar moiety when
compared to mannose (activity = 1). This demonstrates the
synergistic benefit provided by the multivalent, dendritic array of
receptor groups. A complete study of polyvalent affinity vs.
dendrimer size and generation number is underway and will be
described in the future.
8 V. V. Rostovsev, L. G. Green, V. V. Fokin and K. B. Sharpless, Angew.
Chem., Int. Ed., 2002, 41, 2596; C. W. Tornøe, C. Christensen and
M. Meldal, J. Org. Chem., 2002, 67, 3057.
9
J. A. Opsteen and J. C. M. Van Hest, Chem. Commun., 2005, 57–59;
M. Malkoch, K. Schleicher, E. Drockenmuller, C. J. Hawker,
T. P. Russell, P. Wu and V. V. Fokin, Macromolecules, 2005, 38,
3663–3678; N. V. Tsarevsky, B. S. Sumerlin and K. Matyjaszewski,
Macromolecules, 2005, 38, 3558–3561; B. Parrish, R. B. Breitenkamp
and T. Emrick, J. Am. Chem. Soc., 2005, 127, 7404–7410.
10 M. Malkoch, E. Malmstr o¨ m and A. Hult, Macromolecules, 2002, 35,
In summary, copper(I)-catalyzed azide–acetylene cycloaddi-
8307–8314.
11 See supporting information.
15
tion has proven to be a powerful tool for both the preparation
of unsymmetric diblock dendrimers and for efficient differentiation
of the dendritic chain end groups. By preparing dendrons with
unique acetylenic and azide groups at the focal point, highly
efficient coupling of these blocks was achieved through the
1
1
2 L. Zhu, V. M. Lynch and E. V. Anslyn, Tetrahedron, 2004, 60, 7267.
3 D. D. D ´ı az, S. Punna, P. Holzer, A. K. McPherson, K. B. Sharpless,
V. V. Fokin and M. G. Finn, J. Polym. Sci., Sect A: Polym. Chem.,
004, 42, 4392–4403.
4 (a) L. L. So and I. J. Goldstein, J. Biol. Chem., 1968, 243, 2003–2007; (b)
T. Osawa and I. Matsumoto, Methods Enzymol., 1972, 28, 323–327.
2
1
formation of
a stable [1,2,3]-triazole linkage. Quantitative
15 H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int. Ed.,
2001, 40, 2004.
modification and sequential differentiation of the chain ends by
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 5775–5777 | 5777