ACS Medicinal Chemistry Letters
Letter
(12) Wong, P. C.; Seiffert, D.; Bird, J. E.; Watson, C. A.; Bostwick, J. S.;
Giancarli, M.; Allegretto, N.; Hua, J.; Harden, D.; Guay, J.; Callejo, M.;
Miller, M. M.; Lawrence, R. M.; Banville, J.; Guy, J.; Maxwell, B. D.;
Priestley, E. S.; Marinier, A.; Wexler, R. R.; Bouvier, M.; Gordon, D. A.;
Schumacher, W. A.; Yang, J. Blockade of Protease-Activated Receptor-4
(PAR4) Provides Robust Antithrombotic Activity with Low Bleeding.
Sci. Transl. Med. 2017, 9, No. eaaf5294.
(13)Dockendorff,C.;Aisiku,O.;Verplank,L.;Dilks,J.R.;Smith,D.A.;
Gunnink, S. F.; Dowal, L.; Negri, J.; Palmer, M.; Macpherson, L.;
Schreiber, S. L.; Flaumenhaft, R. Discovery of 1,3-Diaminobenzenes as
Selective Inhibitors of Platelet Activation at the PAR1 Receptor. ACS
Med. Chem. Lett. 2012, 3, 232−237.
Selective Peptide Mimetics Based on Indole and Indazole Templates. J.
Med. Chem. 2001, 44, 1021−1024.
(28) Chieng-Yane, P.; Bocquet, A.; Letienne, R.; Bourbon, T.;
Sablayrolles, S.; Perez, M.; Hatem, S. N.; Lompre, A.-M.; Le Grand, B.;
David-Dufilho, M. Protease-Activated Receptor-1 Antagonist F 16618
Reduces Arterial Restenosis by Down-Regulation of Tumor Necrosis
FactorAlphaandMatrixMetalloproteinase7Expression,Migration,and
Proliferation of Vascular Smooth Muscle Cells. J. Pharmacol. Exp. Ther.
2011, 336, 643−651.
(29)Boire,A.;Covic,L.;Agarwal,A.;Jacques,S.;Sherifi,S.;Kuliopulos,
A.PAR1IsaMatrixMetalloprotease-1ReceptorThatPromotesInvasion
and Tumorigenesis of Breast Cancer Cells. Cell 2005, 120, 303−313.
(30) Kaufmann, R.; Rahn, S.; Pollrich, K.; Hertel, J.; Dittmar, Y.;
Hommann, M.; Henklein, P.; Biskup, C.; Westermann, M.; Hollenberg,
M. D.; Settmacher, U. Thrombin-Mediated Hepatocellular Carcinoma
Cell Migration: Cooperative Action via Proteinase-Activated Receptors
1 and 4. J. Cell. Physiol. 2007, 211, 699−707.
(31) Kaufmann, R.; Mussbach, F.; Henklein, P.; Settmacher, U.
Proteinase-Activated Receptor 2-Mediated Calcium Signaling in
Hepatocellular Carcinoma Cells. J. Cancer Res. Clin. Oncol. 2011, 137,
965−973.
(32) Damiano, B. P.; Derian, C. K.; Maryanoff, B. E.; Zhang, H.-C.;
Gordon, P. A. RWJ-58259: a Selective Antagonist of Protease Activated
Receptor-1. Cardiovasc. Drug Rev. 2003, 21, 313−326.
(33) Farmer, L. J.; Lessard, S.; Liu, B.; St-Onge, M.; Sturino, C.;
Szychowski,J.;Yannopoulos,C.ImidazopyridazinesUsefulasInhibitors
of the PAR-2 Signaling Pathway. WO 2015/048245.
(34) Krishnamurthy, V. M.; Semetey, V.; Bracher, P. J.; Shen, N.;
Whitesides, G. M. Dependence of Effective Molarity on Linker Length
for an Intramolecular Protein−Ligand System. J. Am. Chem. Soc. 2007,
129, 1312−1320.
(14) De Ceunynck, K.; Peters, C. G.; Jain, A.; Higgins, S. J.; Aisiku, O.;
Fitch-Tewfik, J. L.; Chaudhry, S. A.; Dockendorff, C.; Parikh, S. M.;
Ingber, D. E.; Flaumenhaft, R. PAR1 Agonists Stimulate APC-Like
Endothelial Cytoprotection and Confer Resistance to Thromboin-
flammatory Injury. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, E982−E991.
(15) Gandhi, D. M.; Majewski, M. W.; Rosas, R.;Kentala, K.; Foster, T.
J.; Greve, E.; Dockendorff, C. Characterization of Protease-Activated
Receptor (PAR) Ligands: Parmodulins Are Reversible Allosteric
Inhibitors of PAR1-Driven Calcium Mobilization in Endothelial Cells.
Bioorg. Med. Chem. 2018, 26, 2514−2529.
(16) Portoghese, P. S.; Ronsisvalle, G.; Larson, D. L.; Yim, C. B.; Sayre,
L.M.;Takemori,A.E.OpioidAgonistandAntagonistBivalentLigandsas
Receptor Probes. Life Sci. 1982, 31, 1283−1286.
(17) Shonberg, J.; Scammells, P. J.; Capuano, B. Design Strategies for
Bivalent Ligands Targeting GPCRs. ChemMedChem 2011, 6, 963−974.
(18) Hiller, C.; Kuhhorn, J.; Gmeiner, P. Class a G-Protein-Coupled
̈
Receptor(GPCR)DimersandBivalentLigands. J. Med. Chem. 2013, 56,
6542−6559.
(19) Daniels, D. J.; Lenard, N. R.; Etienne, C. L.; Law, P.-Y.; Roerig, S.
C.; Portoghese, P. S. Opioid-Induced Tolerance and Dependence in
Mice Is Modulated by the Distance Between Pharmacophores in a
Bivalent Ligand Series. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 19208−
19213.
(35) Meldal, M.; Tornøe, C. W. Cu-Catalyzed Azide−Alkyne
Cycloaddition. Chem. Rev. 2008, 108, 2952−3015.
(36)Chan, T. R.;Hilgraf, R.;Sharpless, K. B.; Fokin, V. V. Polytriazoles
as Copper(I)-Stabilizing Ligands in Catalysis. Org. Lett. 2004, 6, 2853−
2855.
(20) Xu, L.;Josan, J. S.; Vagner, J.; Caplan, M. R.;Hruby, V. J.; Mash, E.
A.; Lynch, R. M.; Morse, D. L.; Gillies, R. J. Heterobivalent Ligands
TargetCell-SurfaceReceptorCombinationsinVivo.Proc.Natl.Acad.Sci.
U. S. A. 2012, 109, 21295−21300.
(37) Cheng, R. K. Y.; Fiez-Vandal, C.; Schlenker, O.; Edman, K.;
Aggeler, B.; Brown, D. G.; Brown, G. A.; Cooke, R. M.; Dumelin, C. E.;
́
Dore,A.S.;Geschwindner,S.;Grebner,C.;Hermansson,N.-O.;Jazayeri,
A.; Johansson, P.; Leong, L.; Prihandoko, R.; Rappas, M.; Soutter, H.;
(21)Lensing, C.J.;Adank, D. N.;Wilber, S. L.;Freeman, K. T.;Schnell,
S. M.; Speth, R. C.; Zarth, A. T.; Haskell-Luevano, C. A Direct in Vivo
Comparison of the Melanocortin Monovalent Agonist Ac-His-DPhe-
Arg-Trp-NH2 Versus the Bivalent Agonist Ac-His-DPhe-Arg-Trp-
PEDG20-His-DPhe-Arg-Trp-NH2: a Bivalent Advantage. ACS Chem.
Neurosci. 2017, 8, 1262−1278.
̈
Snijder, A.; Sundstrom, L.; Tehan, B.; Thornton, P.; Troast, D.; Wiggin,
G.; Zhukov, A.; Marshall, F. H.; Dekker, N. Structural Insight Into
Allosteric Modulation of Protease-Activated Receptor 2. Nature 2017,
545, 112−115.
(38) Corbeil, C. R.; Englebienne, P.; Moitessier, N. Docking Ligands
Into Flexible and Solvated Macromolecules. 1. Development and
Validation of FITTED 1.0. J. Chem. Inf. Model. 2007, 47, 435−449.
(39)Jiang,Y.;Yau,M.-K.;Lim, J.;Wu, K.-C.;Xu,W.;Suen,J.Y.;Fairlie,
D.P.APotentAntagonistofProtease-ActivatedReceptor2ThatInhibits
Multiple Signaling Functions in Human Cancer Cells. J. Pharmacol. Exp.
Ther. 2018, 364, 246−257.
(22) Hubner, H.; Schellhorn, T.; Gienger, M.; Schaab, C.; Kaindl, J.;
̈
̈
Leeb, L.; Clark, T.; Moller, D.; Gmeiner, P. Structure-Guided
Development of Heterodimer-Selective GPCR Ligands. Nat. Commun.
2016, 7, 12298.
(23) Shi, X.; Gangadharan, B.; Brass, L. F.; Ruf, W.; Mueller, B. M.
Protease-Activated Receptors (PAR1 and PAR2) Contribute to Tumor
Cell Motility and Metastasis. Mol. Cancer Res. 2004, 2, 395−402.
(24) Jaber, M.; Maoz, M.; Kancharla, A.; Agranovich, D.; Peretz, T.;
Grisaru-Granovsky, S.; Uziely, B.; Bar-Shavit, R. Protease-Activated-
Receptor-2 Affects Protease-Activated-Receptor-1-Driven Breast Can-
cer. Cell. Mol. Life Sci. 2014, 71, 2517−2533.
(25) Kancharla, A.; Maoz, M.; Jaber, M.; Agranovich, D.; Peretz, T.;
Grisaru-Granovsky, S.; Uziely, B.; Bar-Shavit, R. PH Motifs in PAR1&2
Endow Breast Cancer Growth. Nat. Commun. 2015, 6, 8853.
(26) Sevigny, L. M.; Austin, K. M.; Zhang, P.; Kasuda, S.; Koukos, G.;
Sharifi, S.; Covic, L.; Kuliopulos, A. Protease-Activated Receptor-2
Modulates Protease-Activated Receptor-1-Driven Neointimal Hyper-
plasia. Arterioscler., Thromb., Vasc. Biol. 2011, 31, e100−e106.
(27)Zhang,H.-C.;Derian,C.K.;Andrade-Gordon,P.;Hoekstra,W.J.;
McComsey, D. F.; White, K. B.;Poulter, B. L.; Addo, M. F.; Cheung, W.-
M.; Damiano, B. P.; Oksenberg, D.; Reynolds, E. E.; Pandey, A.;
Scarborough, R. M.; Maryanoff, B. E. Discovery and Optimization of a
Novel Series of Thrombin Receptor (PAR-1) Antagonists: Potent,
(40) Jimenez-Vargas, N. N.; Pattison, L. A.; Zhao, P.; Lieu, T.; Latorre,
R.; Jensen, D. D.; Castro, J.;Aurelio, L.;Le, G. T.;Flynn, B.;Herenbrink,
C. K.; Yeatman, H. R.; Edgington-Mitchell, L.; Porter, C. J. H.; Halls, M.
L.; Canals, M.; Veldhuis, N. A.; Poole, D. P.; McLean, P.; Hicks, G. A.;
Scheff, N.; Chen, E.; Bhattacharya, A.; Schmidt, B. L.; Brierley, S. M.;
Vanner, S. J.; Bunnett, N. W. Protease-Activated Receptor-2 in
Endosomes Signals Persistent Pain of Irritable Bowel Syndrome. Proc.
Natl. Acad. Sci. U. S. A. 2018, 115, E7438−E7447.
F
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX