COMMUNICATIONS
[5] For selected recent examples of alkynes as nucleo-
Experimental Section
philes, see: a) W. Lin, T. Cao, W. Fan, Y. Han, J. Kuang,
H. Luo, B. Miao, X. Tang, Q. Yu, W. Yuan, J. Zhang, C.
Zhu, S. Ma, Angew. Chem. 2014, 126, 281–285; Angew.
Chem. Int. Ed. 2014, 53, 277–281; b) Q.-H. Zheng, W.
Meng, G.-J. Jiang, Z.-X. Yu, Org. Lett. 2013, 15, 5928–
5931; c) K. N. Singh, P. Singh, A. Kaur, P. Singh, Synlett
2012, 23, 760–764; d) J. Yu, Z. Li, K. Jia, Z. Jiang, M.
Liu, W. Su, Tetrahedron Lett. 2013, 54, 2006–2009;
e) M. Rueping, R. M. Koenigs, K. Poscharny, D. C.
Fabry, D. Leonori, C. Vila, Chem. Eur. J. 2012, 18,
5170–5174.
General Procedure for CDC of THIQs and Alkyl
Nitriles
Corresponding
2-substituted
tetrahydroisoquinoline
(0.25 mmol), CuCl2 (7 mg, 20 mol%), Cs2CO3 (82 mg,
1 equiv.), alkyl nitrile (3.5 mL), and TEMPO (58.5 mg,
1.5 equiv.) were added into a Schlenk tube which was evacu-
ated and back filled with nitrogen at room temperature.
Then the reaction tube was sealed. The tube was heated up
to 1208C for 20 h. After cooling to room temperature, the
solid material was removed by filtration and washed with
30 mL of ethyl acetate. The combined organic layers were
evaporated, and the resulting crude product was purified by
column chromatography on silica gel to give the products.
All products (2a–2i, 2k–2q, 4, and 5) were unknown com-
pounds. When we performed the reaction with isobutyroni-
trile and n-pentanenitrile, the amount of the substrate used
was 0.2 mmol and 2 mL isobutyronitrile or n-pentanenitrile
were added.
[6] For selected recent examples of nitroalkanes as nucleo-
philes, see: a) Q.-Y. Meng, Q. Liu, J.-J. Zhong, H.-H.
Zhang, Z.-J. Li, B. Chen, C.-H. Tung, L.-Z. Wu, Org.
Lett. 2012, 14, 5992–5995; b) T. Nobuta, N. Tada, A.
Fujiya, A. Kariya, T. Miura, A. Itoh, Org. Lett. 2013,
15, 574–577; c) D. P. Hari, B. Kçnig, Org. Lett. 2011, 13,
3852–3855; d) A. Tanoue, W.-J. Yoo, S. Kobayashi, Adv.
Synth. Catal. 2013, 355, 269–273; e) A. Tanoue, W.-J.
Yoo, S. Kobayashi, Org. Lett. 2014, 16, 2346–2349; f) J.
Xie, H. Li, J. Zhou, Y. Cheng, C. Zhu, Angew. Chem.
2012, 124, 1278–1281; Angew. Chem. Int. Ed. 2012, 51,
1252–1255; g) M. Rueping, J. Zoller, D. C. Fabry, K.
Poscharny, R. M. Koenigs, T. E. Weirich, J. Mayer,
Chem. Eur. J. 2012, 18, 3478–3481.
Acknowledgements
[7] For selected recent examples of aldehydes or ketones
as nucleophiles, see: a) G. Zhang, Y. Ma, S. Wang, Y.
Zhang, R. Wang, J. Am. Chem. Soc. 2012, 134, 12334–
12337; b) C. Huo, M. Wu, X. Jia, H. Xie, Y. Yuan, J.
Tang, J. Org. Chem. 2014, 79, 9860–9864; c) X. Liu, B.
Sun, Z. Xie, X. Qin, L. Liu, H. Lou, J. Org. Chem.
2013, 78, 3104–3112; d) K. Alagiri, P. Devadig, K. R.
Prabhu, Chem. Eur. J. 2012, 18, 5160–5164; e) W. Chen,
H. Zheng, X. Pan, Z. Xie, X. Zan, B. Sun, L. Liu, H.
Lou, Tetrahedron Lett. 2014, 55, 2879–2882; f) M.
Rueping, C. Vila, R. M. Koenigs, K. Poscharny, D. C.
Fabry, Chem. Commun. 2011, 47, 2360–2362; g) J.
Zhang, B. Tiwari, C. Xing, X. Chen, Y. R. Chi, Angew.
Chem. 2012, 124, 3709–3712; Angew. Chem. Int. Ed.
2012, 51, 3649–3652; h) G. Zhang, Y. Ma, S. Wang, W.
Kong, R. Wang, Chem. Sci. 2013, 4, 2645–2651.
[8] For selected recent examples of activated methylene
compounds as nucleophiles, see: a) J. Dhineshkumar,
M. Lamani, K. Alagiri, K. R. Prabhu, Org. Lett. 2013,
15, 1092–1095; b) M. Rueping, D. Leonori, T. Poisson,
Chem. Commun. 2011, 47, 9615–9617; c) H. Richter,
O. G. MancheÇo, Eur. J. Org. Chem. 2010, 4460–4467.
[9] For selected recent examples of silicon reagents as nu-
cleophiles, see: a) H. Mitsuderaa, C.-J. Li, Tetrahedron
Lett. 2011, 52, 1898–1900; b) G. Bergonzini, C. S. Schin-
dler, C.-J. Wallentin, E. N. Jacobsen, C. R. J. Stephen-
son, Chem. Sci. 2014, 5, 112–116; c) M. O. Ratnikov, X.
Xu, M. P. Doyle, J. Am. Chem. Soc. 2013, 135, 9475–
9479; d) Q. Chen, J. Zhou, Y. Wang, C. Wang, X. Liu,
Z. Xu, L. Lin, R. Wang, Org. Lett. 2015, 17, 4212–4215.
[10] For selected recent examples of phosphorus reagents as
nucleophiles, see: a) W.-J. Yoo, S. Kobayashi, Green
Chem. 2014, 16, 2438–2442; b) M. Rueping, S. Zhu,
R. M. Koenigs, Chem. Commun. 2011, 47, 8679–8681;
c) J. Xuan, T.-T. Zeng, Z.-J. Feng, Q.-H. Deng, J.-R.
Chen, L.-Q. Lu, W.-J. Xiao, H. Alper, Angew. Chem.
This work was supported by NSFC (21272001), Shanghai
Education Committee (13ZZ014) and Shanghai Jiao Tong
University. We are grateful to the Instrumental Analysis
Center of SJTU for compound analysis.
References
[1] a) J. D. Scott, R. M. Williams, Chem. Rev. 2002, 102,
1669–1730; b) K. W. Bentley, Nat. Prod. Rep. 2004, 21,
395–424; c) M. Chrzanowska, M. D. Rozwadowska,
Chem. Rev. 2004, 104, 3341–3370.
[2] For selected reviews on CDC reactions, see: a) Z. Li,
D. S. Bohle, C.-J. Li, Proc. Natl. Acad. Sci. USA 2006,
103, 8928–8933; b) C.-J. Li, Acc. Chem. Res. 2009, 42,
335–344; c) S. A. Girard, T. Knauber, C.-J. Li, Angew.
Chem. 2014, 126, 76–103; Angew. Chem. Int. Ed. 2014,
53, 74–100; d) S.-I. Murahashi, D. Zhang, Chem. Soc.
Rev. 2008, 37, 1490–1501; e) W.-J. Yoo, C.-J. Li, Top.
Curr. Chem. 2010, 292, 281–302; f) C.-J. Li, Z. Li, Pure
Appl. Chem. 2006, 78, 935–945; g) C. Zhang, C. Tang,
N. Jiao, Chem. Soc. Rev. 2012, 41, 3464–3484.
[3] a) S.-I. Murahashi, T. Naota, K. Yonemura, J. Am.
Chem. Soc. 1988, 110, 8256–8258; b) Z. Li, C.-J. Li, J.
Am. Chem. Soc. 2004, 126, 11810–11811.
[4] For selected recent cyanation reactions, see: a) G.
Zhang, Y. Ma, G. Cheng, D. Liu, R. Wang, Org. Lett.
2014, 16, 656–659; b) K. Alagiri, K. R. Prabhu, Org.
Biomol. Chem. 2012, 10, 835–842; c) M. Rueping, S.
Zhu, R. M. Koenigs, Chem. Commun. 2011, 47, 12709–
12711; d) A. Lin, H. Peng, A. Abdukader, C. Zhu, Eur.
J. Org. Chem. 2013, 7286–7290; e) J. M. Allen, T. H.
Lambert, J. Am. Chem. Soc. 2011, 133, 1260–1262; f) N.
Sakai, A. Mutsuro, R. Ikeda, T. Konakahara, Synlett
2013, 24, 1283–1285.
Adv. Synth. Catal. 0000, 000, 0 – 0
5
ꢁ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ÞÞ
These are not the final page numbers!