6304
F. Saliu, B. Rindone / Tetrahedron Letters 51 (2010) 6301–6304
Table 3
Yield in the TBD-catalyzed synthesis of unsymmetrical ureas
Entry
First amine added
Second amine added
Unsymmetrical urea product
Yielda (%)
1
2
3
4
5
Cyclohexylamine
Pentylamine
Cyclohexylamine
Cyclohexylamine
Piperidine
Allylamine
Morpholine
Hexylamine
Benzylamine
Allylamine
Diethylamine
Piperidine
Cyclohexylamine
Morpholine
Pentylamine
Morpholine
(5a)
(5b)
(6a)
(6b)
None
(6c)
60
58
88
92
—
90
—
65
6
7b
8b
None
(6d)
a
Yields refer to isolated pure products characterized by IR, GC–MS, and 1H NMR. Reaction conditions: 20 mmol of ethylene carbonate,
20 mmol of the first amine, 20 mmol of the second amine, 0.2 mmol of TBD catalyst, 90 °C, 180 min.
b
0.2 mmol of 1,3-diisopropylthiourea catalyst.
2. Weissermel, K.; Arpe, H. J. In Industrial Organic Chemistry, 2nd ed.; WCH:
Weinheim, 1993; p 373.
3. Bigi, F.; Maggi, R.; Sartori, G. Green Chem. 2000, 2, 140–148.
4. Shi, F.; Deng, Y. Q. J. Catal. 2002, 211, 548–551.
5. Bartolo, G.; Salerno, G.; Mancuso, R.; Costa, M. J. Org. Chem. 2004, 69, 4741–
4750.
6. Bolzacchini, E.; Meinardi, S.; Orlandi, M.; Rindone, B. J. Mol. Catal. 1996, 111,
281.
7. McCusker, J. E.; Msain, A. D.; Johnson, K. S.; Grasso, C. A.; McElwee-White, N. J.
Org. Chem. 2000, 65, 5216–5222.
8. Gabriele, B.; Salerno, G.; Costa, M. Top. Organomet. Chem. 2006, 18, 239.
9. Diaz, D. J.; Darko, A. K.; McElwee-White, L. Eur. J. Org. Chem. 2007, 27, 4453–
4465.
lation of 1,3-dicyclohexylurea required only dilution of the reac-
tion mixture with 20 mL of water and filtration. The solid residue
was then washed with dichloromethane. The collected organic
fraction was concentrated in 5 mL of dichloromethane and filtered
again. 1-3-Dicyclohexylurea was recovered as a white crystalline
solid. The validation of this isolation method was assessed by
testing a standard solution of 1,3-dicyclohexylurea, cyclohexyliso-
cyanate and cyclohexylamine. The absolute recovery of 1,3-dicy-
clohexylurea ranged from 94% to 103%.
10. Ion, A.; Parvulescu, V.; Jacobs DeVos, P. D. Green Chem. 2007, 9, 158–161.
11. Jiang, T.; Ma, X.; Zhou, Y.; Liang, S.; Zhang, J.; Han, B. Green Chem. 2008, 10, 465.
12. Ogura, H.; Tekeda, K.; Tokue, R.; Kobayashi, T. A. Synthesis 1978, 394–396.
13. Fournier, J.; Bruneau, C.; Dixneuf, P. H.; Lecolier, S. J. Org. Chem. 1991, 56, 4456–
4458.
3.2. Representative experimental procedure for the synthesis of
disubstituted unsymmetrical ureas (5) and for the synthesis of
trisubstituted unsymmetrical ureas (6)
14. Cooper, C. F.; Falcone, S. J. Synth. Commun. 1995, 25, 2467–2474.
15. Yamazaki, N.; Higashi, F.; Iguchi, T. Tetrahedron Lett. 1974, 13, 1191–1194.
16. Fu, Z. H.; Ono, Y. J. Mol. Catal. 1994, 91, 399.
17. Angeles, E.; Santillan, A.; Martinez, I.; Ramirez, A.; Moreno, E.; Salmon, M.;
Martinez, R. Synth. Commun. 1994, 24, 2441–2447.
18. Aresta, M.; Barloco, C.; Quaranta, E. Tetrahedron 1995, 51, 8073.
19. Rivetti, F.; Romano, U.; Delledonne, D. Green Chem. 1996, 34, 332. and
references cited therein.
20. Fukuoka, S.; Kawamura, M.; Komiya, K.; Tojo, M.; Hachiya, H.; Hasegawa, K.;
Aminaka, M.; Okamoto, H.; Fukawa, I.; Konno, S. Green Chem. 2003, 5, 497–507.
21. Aresta, M.; Quaranta, E.; Tommasi, I.; Giannoccaro, P.; Ciccarese, A. Gazz. Chim.
Ital. 1995, 125, 509–538.
22. Darensbourg, D. J.; Holtcamp, M. W. Coord. Chem. Rev. 1996, 153, 155–174.
23. Shaikh, A. G.; Sivaram, S. Chem. Rev. 1996, 96, 951–976.
24. Tomita, H.; Sanda, F.; Endo, T. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 3678–
3685.
25. Schmidt, H.; Hollitzer, O.; Seewald, A.; Steglich, W. Chem. Ber. 1979, 112, 727–
733.
Ethylene carbonate (10 mmol) and
a primary amine (1,
10 mmol) were heated at 70 °C for 1 h to afford the corresponding
2-hydroxyethylcarbamate (3). This transformation can be sped up
by reacting the solventless mixture under microwave irradiation.
TBD (0.2 mmol) and a second amine (another primary amine to af-
ford a disubstituted urea (5) or a secondary amine to afford a tri-
substituted urea (6), 10 mmol) were added to the reaction
mixture and were heated at the desired temperature for 120 min.
N-Allyl-4-morpholinecarboxamide 6c IR (KBr): 3268, 2911, 2804,
1742, 1530 cmÀ1; 1H NMR (400 MHz, CDCl3) d: 3.22–3.71 (m, 10H),
5.05 (d, J = 9.2 Hz, 1H), 5.13 (d, J = 16.1 Hz, 1H), 5.62 (br, 1H) 5.76
(m, 1H); 13C NMR (100 MHz, CDCl3) d 43.5, 57.2, 76.7, 116.1,
134.9, 157.1; MS (EI 70 eV) m/z: 170 (M+), 141, 127, 114, 86, 70, 57.
26. Laufer, D. A.; Doyle, K.; Zhang, X. Org. Prep. Proc. Int. 1989, 21, 771–776.
27. Hayashi, T.; Yasuoka, J. Eur Pat, EP 846679, 1998; Chem. Abstr. 1998, 129,
40921.
Acknowledgments
28. Fujita, S.; Bhanage, B. M.; Kanamaru, H.; Arai, M. J. Mol. Catal. A: Chem. 2005, 23,
43–48.
29. Jagtap, S. R.; Patil, Y. P.; Panda, A. G.; Bhanage, B. M. Synth. Commun. 2009, 39,
2093–2100.
30. Xiao, L.; Xu, L.; Xia, C. Green Chem. 2007, 9, 369–372.
31. Pikho, P. M. Angew. Chem., Int. Ed. 2004, 43, 2062–2064.
32. Connon, S. J. Chem. Eur. J. 2006, 12, 5418–5427.
33. Barbarini, A.; Maggi, R.; Mazzacani, A.; Mori, G.; Sartori, G.; Sartorio, R.
Tetrahedron Lett. 2003, 442, 2931–2934.
We warmly thank Giovanni Di Gennaro, Matteo Berra, Emanu-
ele Fossati, Marcello Dusini, Alessandra Saliu, and Moira Pringle for
their collaboration.
References and notes
1. Kirk-Othmer. In Encyclopaedia of Chemical Technology, 4th ed.; Wiley, New York,
34. de Aguirre, I.; Collot, J. Bull. Soc. Chim. Belg. 1989, 98, 19.
1995; Vol. 14, p 902.