Green Chemistry
Paper
13 N. Lal, A. Sarswat, L. Kumar, K. Nandikonda, S. Jangir, V. Bala
Conclusions
and V. L. Sharma, J. Heterocycl. Chem., 2015, 52, 156–162.
In conclusion, we have developed a mild and highly efficient 14 K. Ramadas, N. Srinivasan, N. Janarthanan and R. Pritha,
visible-light photocatalytic aerobic oxidation reaction in con- Org. Prep. Proced. Int., 1996, 28, 352–355.
tinuous flow to access thiuram disulfides. This operationally 15 O. Bergendorff and C. Hansson, J. Agric. Food Chem., 2002,
simple method circumvents the drawbacks of using strong 50, 1092–1096.
acids/bases and hazardous oxidants in conventional synthesis. 16 M. Tajbakhsh, R. Hosseinzadeh and A. Shakoori,
It is advantageous with a green oxidant and solvent, short reac- Tetrahedron Lett., 2004, 45, 1889–1893.
tion time, low catalyst loading, much improved purity and 17 J. Deng, J. Zhang, K. Wang and G. Luo, Chin. J. Chem.,
high yield. We expect this metal-free continuous-flow process 2019, 37, 161–170.
to serve as a scalable and sustainable process for manufactur- 18 W. Shu, L. Pellegatti, M. A. Oberli and S. L. Buchwald,
ing thiuram disulfides and other important sulfur-containing
industrial products.
Angew. Chem., Int. Ed., 2011, 50, 10665–10669.
19 J. Zhang, C. Gong, X. Zeng and J. Xie, Coord. Chem. Rev.,
2016, 324, 39–53.
20 M. B. Plutschack, B. Pieber, K. Gilmore and
P. H. Seeberger, Chem. Rev., 2017, 117, 11796–11893.
21 M. Movsisyan, E. I. Delbeke, J. K. Berton, C. Battilocchio,
S. V. Ley and C. V. Stevens, Chem. Soc. Rev., 2016, 45, 4892–
4928.
Conflicts of interest
The authors received research funding from Hebi Uhoo New
Materials Co., Ltd for this study. Hebi Uhoo New Materials
Co., Ltd and Nanjing University have jointly filed a patent for 22 D. Webb and T. F. Jamison, Chem. Sci., 2010, 1, 675–680.
the continuous-flow synthesis of thiuram disulfides via photo- 23 A. Sniady, M. W. Bedore and T. F. Jamison, Angew. Chem.,
catalysis (Application# 202011315319.5).
Int. Ed., 2011, 50, 2155–2158.
24 T. Noël, Y. Su and V. Hessel, Top. Organomet. Chem., 2016,
57, 1–42.
25 J. Zhang, K. Wang, A. R. Teixeira, K. F. Jensen and G. Luo,
Annu. Rev. Chem. Biomol. Eng., 2017, 8, 285–305.
Acknowledgements
We thank Hebi Uhoo New Materials Co., Ltd for financial 26 B. Gutmann, D. Cantillo and C. O. Kappe, Angew. Chem.,
support of this research. This work was supported in part by Int. Ed., 2015, 54, 6688–6728.
the National Natural Science Foundation of China (grant 27 S. V. Ley, D. E. Fitzpatrick, R. J. Ingham and R. M. Myers,
21872068) and the Fundamental Research Funds for the
Central Universities (grant 0205-14380182).
Angew. Chem., Int. Ed., 2015, 54, 3449–3464.
28 S. V. Ley, D. E. Fitzpatrick, R. M. Myers, C. Battilocchio and
R. J. Ingham, Angew. Chem., Int. Ed., 2015, 54, 10122–10136.
29 C. J. Mallia and I. R. Baxendale, Org. Process Res. Dev.,
2016, 20, 327–360.
30 S. L. Poe, M. A. Cummings, M. P. Haaf and D. T. McQuade,
Angew. Chem., int. Ed., 2006, 45, 1544–1548.
31 T. Horie, M. Sumino, T. Tanaka, Y. Matsushita, T. Ichimura
and J. I. Yoshida, Org. Process Res. Dev., 2010, 14, 405–410.
32 D. L. Browne, B. J. Deadman, R. Ashe, I. R. Baxendale and
S. V. Ley, Org. Process Res. Dev., 2011, 15, 693–697.
Notes and references
1 M. H. S. Gradwell and D. Grooff, J. Appl. Polym. Sci., 2002,
83, 1119–1127.
2 G. Heideman, R. Datta, J. Noordermeer and B. Baarle,
Rubber Chem. Technol., 2004, 77(5), 512–541.
3 B. Cvek, Drug Discovery Today, 2012, 17, 409–412.
4 D. Chen, Q. C. Cui, H. Yang and Q. P. Dou, Cancer Res., 33 C. A. Hone and C. O. Kappe, Top. Curr. Chem., 2019, 2, 377.
2006, 66, 10425–10433.
5 M. Wang, X. Song and N. Ma, Catal. Lett., 2014, 144, 1233–
1239.
34 N. Emmanuel, P. Bianchi, J. Legros and J.-C. M. Monbaliu,
Green Chem., 2020, 22, 4105–4115.
35 S. G. Baidakov, B. Y. Grishin, V. V. Komarov, A. N. Kostin
and A. I. Mashin, Meas. Tech., 2011, 54, 175–179.
6 C. Philip, Aust. Prescr., 2015, 38, 41–43.
7 S. Torii, H. Tanaka and K. Mishima, US Patent, 412074, 36 A. Albini and M. Fagnoni, Green Chem., 2004, 6, 1–6.
1978. 37 D. F. Swinehart, J. Chem. Educ., 1962, 39, 333.
8 L. Eisenhuth, H. G. Zengel and M. Bergfeld, US Patent, 38 C. Sambiagio and T. Noël, Trends Chem., 2020, 2, 92–106.
4468526, 1984.
39 D. P. Hari and B. König, Chem. Commun., 2014, 50, 6688–6699.
40 N. Shao, A. Gavrilidis and P. Angeli, Chem. Eng. J., 2010,
160(3), 873–881.
9 A. Bergomi and J. J. Tazuma, US Patent, 4144272, 1979.
10 X. Yao, C. Zeng, C. Wang and L. Zhang, Korean J. Chem.
Eng., 2011, 28, 723–730.
41 X.-F. Zhang and X. Li, J. Lumin., 2011, 131, 2263–2266.
11 J. Hu, K. Wang, J. Deng and G. Luo, Ind. Eng. Chem. Res., 42 Y.-Z. Chen, Z. U. Wang, H. Wang, J. Lu, S.-H. Yu and
2018, 57, 16572–16578. H.-L. Jiang, J. Am. Chem. Soc., 2017, 139(5), 2035–2044.
12 C. N. Kapanda, G. G. Muccioli, G. Labar, J. H. Poupaert and 43 J. Hu, J. Tian, K. Wang, J. Deng and G. S. Luo, J. Flow
D. M. Lambert, J. Med. Chem., 2009, 52, 7310–7314.
Chem., 2019, 9, 211–220.
This journal is © The Royal Society of Chemistry 2021
Green Chem., 2021, 23, 1280–1285 | 1285