In both solvent systems the [bmim][PF
system is extremely effective for a considerable number of runs
e.g. run 1, 88%, ee 90%; run 9, 83%, ee 89%). Only after 11
and 12 cycles a dramatic drop in the chemical and optical purity
was observed respectively for [bmim][PF ]/water and
bmim][PF ]/water/tert-butanol solvent systems. Additionally,
when more K OsO (OH) and (DHQD) PHAL were added to
6
]–osmium–ligand
In summary, we have developed a recoverable, reusable,
robust and simple system for the asymmetric dihydroxylation of
olefins, based on the immobilization of the osmium–ligand
catalyst in the ionic liquid.
We thank Fundação para a Ciência e Tecnologia (SFRH/BD/
6792/2001) for financial support.
(
6
[
6
2
2
4
2
the remaining ionic liquid the reaction occurred again in high
optical and chemical yield (runs 12 and 13). After 13 runs, the
recovered [bmim][PF
6
] presented identical spectroscopic data
Notes and references
‡ Experimental procedures and details of osmium content in each phase and
spectral data of reused room temperature ionic liquid are provided in the
ESI.†
1
13
31
(
H, C and P NMR) to the initial sample, allowing the
2
conclusion that both imidazolium and PF
6
ions are stable
under these conditions.‡ The only observed limitation on these
recycling and reuse experiments is the overall reduction of the
ionic liquid phase to 65% and 72% of the initial volume,
6 6
respectively, for [bmim][PF ]/water and [bmim][PF ]/water/
1
R. A. Johnson and K. B. Sharpless, in Catalytic Asymmetric Synthesis,
nd, ed. I. Ojima, VCH, Weinheim, 2000, pp. 357; H. C. Kolb, M. S.
2
VanNieuwenhze and K. B. Sharpless, Chem. Rev., 1994, 94, 2483.
tert-butanol solvent systems. This reduction should arise from
some solubility of the RTIL in water and in diethyl ether.
Concerning the important issue of product contamination by
osmium, it is noteworthy that in the case of the organic phase,
the osmium present is in the range of the detection limit of the
method used (@ 3% or @ 7 ppb). On the other hand, by
performing the AD reaction on 1-hexene using the water/t-
butanol solvent, followed by partitioning between the aqueous
and organic phases, the osmium content was 96% and 6%
respectively. This comparison demonstrates the remarkable
reduction of the osmium contamination in the product phase and
in the aqueous phase by using the RTIL. The osmium content in
the aqueous phase is considerable higher in the first run than in
2 X. Lu, Z. Xu and G. Yang, Org. Process Res. Dev., 2000, 4, 575; L.
Ahrgren and L. Sutin, Org. Process Res. Dev., 1997, 1, 425; Z.-M.
Wang and K. B. Sharpless, J. Org. Chem., 1994, 59, 8302.
3
I. Motorina and C. M. Crudden, Org. Lett., 2001, 3, 2315; Y.-Q. Kuang,
S.-Y. Zhang and L.-L. Wei, Tetrahedron Lett., 2001, 42, 5925; P. H.
Toy and K. D. Janda, Acc. Chem. Res., 2000, 33, 546; C. Bolm and A.
Gerlach, Angew. Chem., Int. Ed. Engl., 1997, 36, 741.
S. Kobayashi, T. Ishida and R. Akiyama, Org. Lett., 2001, 3, 2649; S.
Kobayashi, M. Endo and S. Nagayama, J. Am. Chem. Soc., 1999, 121,
11229.
4
5 A. Sevrens, D. E. De Vos, L. Fiermans, F. Verpoort, P. J. Grobet and P.
A. Jacobs, Angew. Chem., Int. Ed., 2001, 40, 586.
B. M. Choudary, N. S. Chowdari, K. Jyothi and M. L. Bantam, J. Am.
Chem. Soc., 2002, 124, 5341.
T. Welton, Chem. Rev., 1999, 99, 2071; P. Wasserscheid and W. Keim,
Angew. Chem., Int. Ed, 2000, 39, 3772; J. Dupont, C. S. Consorti and J.
Spencer, J. Braz. Chem. Soc., 2000, 11, 337; J. F. Brennecke and E. J.
Maginn, AIChE J., 2001, 47, 2384.
6
7
the remained runs for the [bmim][PF
%). On the other hand, the RTIL phase persistently retains
more than 90% of the osmium of the previous cycle. The
comparison between the [bmim][PF ]/water and [bmim][PF ]/
6
]/water system (14% vs
4
6
6
water/tert-butanol solvent systems shows that the longer life of
the latter system should arise from the higher affinity of the
osmium ligand to the RTIL phase. Additionally, because of the
peculiar properties of the RTIL, the osmium leaching from the
RTIL phase can be potentially minimized by using more
environmentally friendly methods such as using supercritical
8 J. D. Holbrey and K. R. Seddon, J. Chem. Soc., Dalton Trans, 1999, 13,
2133; J. G. Huddleston, A. E. Visser, W. M. Reichert, H. D. Willauer,
G. A. Broker and R. D. Rogers, Green Chem., 2001, 3, 156; A. S.
Larsen, J. D. Holdbrey, F. S. Tham and C. A. Reed, J. Am. Chem. Soc.,
2
000, 122, 7264; A. C. Cole, J. L. Jensen, I. Ntai, K. L. T. Tran, K. J.
Weaver, D. C. Forbes and J. H. Davis Jr, J. Am. Chem. Soc., 2002, 124,
2
(scCO ) extraction or pervaporation.
5
962; P. Wasserscheid, A. Bösmann and C. Bolm, Chem. Commun.,
2
002, 200; L. C. Branco, J. N. Rosa, J. J. M. Ramos and C. A. M.
Table 2 Asymmetric dihydroxylation of 1-hexene in the ionic liquid
bmim][PF ] using the K OsO (OH) /K Fe(CN) system as a recyclable
and reusable catalyst
Afonso, Chem. Eur. J., 2002, 8, 3671.
[
6
2
2
4
3
6
9 L. A. Blanchard, D. Hancu, E. J. Beckman and J. F. Brennecke, Nature,
1999, 399, 28; L. A. Blanchard and J. F. Brennecke, Ind. Eng. Chem.
Res., 2001, 40, 287.
10 R. Sheldon, Chem. Commun., 2001, 2399; C. M. Gordon, Appl. Catal.,
A: General, 2001, 222, 101.
a
[bmim][PF ]/H
6 2
Oa
[bmim][PF ]/H
6 2
O/t-BuOHb
Os in Os in
Os in Os in
11 A. E. Visser, R. P. Swatloski, W. M. Reichert, S. T. Griffin and R. D.
Rogers, Ind. Eng. Chem. Res., 2000, 39, 3596; A. E. Visser, R. P.
Swatloski, W. M. Reichert, R. Mayton, S. Sheff, A. Wierzbicki, J. H.
Davis Jr and R. D. Rogers, Chem. Commun., 2001, 135; A. G. Fadeev
and M. M. Meagher, Chem. Commun., 2001, 295.
12 F. Liu, M. B. Abrams, R. T. Baker and W. Tumas, Chem. Commun.,
2001, 433; M. F. Sellin, P. B. Webb and D. J. Cole-Hamilton, Chem.
Commun., 2001, 781; R. A. Brown, P. Pollet, E. McKoon, C. A. Eckert,
C. L. Liotta and P. G. Jessop, J. Am. Chem. Soc., 2001, 123, 1254; A.
Bösmann, G. Franciò, E. Janssen, M. Solinas, W. Leitner and P.
Wasserscheid, Angew. Chem., Int. Ed., 2001, 40, 2697; P. Lozano, T. de
Diego, D. Carrié, M. Vaultier and J. L. Iborra, Chem. Commun., 2002,
692.
Yield ee
H
(%)
2
O
RTIL
(%)c
Yield ee
H
(%)
2
O
RTIL
(%)
c
c
c
Run
(%)
(%)
(%)
(%)
1
2
3
4
5
6
7
8
9
78
74
76
72
71
74
75
77
70
59
24
88
85
81
84
87
83
86
85
83
71
61
87
84
14
4
3
3
3
4
3
3
3
3
4
19
5
91
88
88
93
90
69
57
51
46
44
44
87
83
88
90
91
85
84
87
89
86
83
77
63
32
90
85
87
83
88
84
91
92
89
82
75
64
86
6
6
4
4
3
3
3
3
4
4
4
4
8
98
97
93
93
90
84
82
71
61
55
56
47
96
10
11
12
13
a
13 L. C. Branco, J. G. Crespo and C. A. M. Afonso, Angew. Chem., Int. Ed,
2002, 41, 2771; L. C. Branco and C. A. M. Afonso, Chem. Eur. J., 2002,
8, 3865.
14 T. Schäfer, C. M. Rodrigues, C. A. M. Afonso and J. G. Crespo, Chem.
Commun., 2001, 1622.
d
73
75
d
85
All reactions were carried out using 1-hexene (0.5 mmol), K
2
OsO
(3.0 mol eq.), K
2
(OH)
CO
4
1
5 R. P. Swatloski, S. K. Spear, J. D. Holbrey and R. D. Rogers, J. Am.
Chem. Soc., 2002, 124, 4974.
(
(
0.5 mol%), (DHQD)
2
PHAL, 1.0 mol%), K
3
Fe(CN)
6
2
3
3.0 mol eq.), [bmim][PF6]/H O (1+1, 6 mL), rt, 24 h followed by extraction
2
1
6 E. D. Bates, R. D. Mayton, I. Ntai and J. H. Davis Jr, J. Am. Chem. Soc.,
2002, 124, 926.
with diethyl ether, removal of both phases and reloading with 1-hexene,
b
water (3 mL), co-oxidant and K
2 3
CO .
Similar procedure to footnote a
c
17 Q. Yao, Org. Lett., 2002, 4, 2197; R. Yamada and Y. Takemoto,
Tetrahedron Lett., 2002, 43, 6849.
using [bmim][PF ]/H O/t-BuOH (1+1+1, 7.5 mL). Percentage of osmium
relative to initial amount detected by ICP in the aqueous and in the RTIL
6
2
1
8 Using (DHQD)
OsO (OH) the 84% yield and ee of 76% for styrene was observed.
Using NMO instead of K Fe(CN) 86% yield and ee of 81% for
-hexene (slow addition) was observed.
2
PHAL in [bmim][PF
6
]/H
2
O (1+1) and OsO
4
instead of
phases; for the etheral phases no osmium was detected for all cycles, error
d
K
2
2
4
of the ICP method ±3%. New addition of K
2 2
OsO (OH)
4
(0.5 mol%) and
3
6
(
2
DHQD) PHAL, (0.5 mol%).
1
CHEM. COMMUN., 2002, 3036–3037
3037